ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-26
    Description: We report the global distribution of areas exhibiting no absorption features (featureless or FL) on the lunar surface, based on the reflectance spectral data set obtained by the Spectral Profiler onboard Kaguya/SELENE. We found that FL sites are located in impact basins and large impact craters in the Feldspathic Highlands Terrane (FHT), while there are no FL sites in the Procellarum regions nor the South Pole–Aitken basin. FL sites in each impact basin/crater are mainly found at the peak rings or rims, where the purest anorthosite (PAN) sites are also found. At the local scale, most of the FL and PAN points are associated with impact craters and peaks. Most of the FL spectra show a steeper (redder) continuum than the PAN spectra, suggesting the occurrence of space weathering effects. We propose that most of the material exhibiting a FL spectrum originate from space weathered PAN. Taking into account all the occurrence trends of FL sites on the Moon, we propose that both the FL and PAN materials were excavated from the primordial lunar crust during ancient basin formations below the megaregolith in the highlands. Since the FL and PAN sites are widely distributed over the lunar surface, our new data may support the existence of a massive PAN layer below the lunar surface.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-25
    Description: We present details of the global distribution of high-Ca pyroxene (HCP)-rich sites in the lunar highlands based on the global dataset of hyper-spectral reflectance obtained by the SELENE Spectral Profiler. Most HCP-rich sites in the lunar highlands are found at fresh impact craters. In each crater, most of the detection points are distributed on the ejecta, rim, and floor of the impact craters rather than the central peaks, while the central peaks are dominated by purest anorthosite (PAN). This indicates that HCP-rich materials originate from relatively shallower regions of the lunar crust than PAN. In addition, while all ray craters with sizes larger than ~40km possess HCP-rich materials, small fresh craters with sizes less than ~6−−10km do not, indicating that the uppermost mixing layers in the lunar crust are not dominated by HCP. Based on these results, we propose that in the upper lunar crust, a HCP-rich zone overlying the PAN layer exists below the uppermost mixing layer. This HCP-rich zone may originate from interstitial melt during the formation of the flotation anorthositic cumulate, while an impact ejecta origin, impact melt origin, and/or magmatic intrusion into the upper lunar crust may also account for the occurrence of HCP-rich sites in the highlands.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-08
    Description: Long-period ground motions due to large earthquakes can cause devastating disasters, especially in urbanized areas located on sedimentary basins. To assess and mitigate such damage, it is essential to rapidly evaluate seismic hazards for infrastructures, which can be simulated by seismic response analyses that use waveforms at the base of each infrastructure as an input ground motion. The present study reconstructs the seismic wavefield in the Tokyo metropolitan area located on the Kanto sedimentary basin, Japan, from seismograms of the Metropolitan Seismic Observation network (MeSO-net). The obtained wavefield fully explains the observed waveforms in the frequency band of 0.10–0.20 Hz. This is attributed to the seismic wavefield imaging technique proposed by Kano et al . [2017], which implements the replica exchange Monte Carlo method to simultaneously estimate model parameters related to the subsurface structure and source information. Further investigation shows that the reconstructed seismic wavefield lower than 0.30 Hz is of high quality in terms of variance reduction, which quantifies a misfit in waveforms, but that the variance reduction rapidly worsens in higher frequencies. Meanwhile, the velocity response spectra show good agreement with observations up to 0.90 Hz in terms of the combined goodness-of-fit, which is a measure of misfit in the velocity response spectra. Inputting the reconstructed wavefield into seismic response analyses, we can rapidly assess the overall damage to infrastructures immediately after a large earthquake.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...