ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2017-01-01
    Print ISSN: 0361-5995
    Digitale ISSN: 1435-0661
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-08-31
    Beschreibung: Many large, fishery-targeted predatory species have attained very high relative densities as a direct result of protection by no-take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge-providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine-scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve-by-habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species ( Ruanoho whero and Forsterygion flavonigrum ) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades. Densities of small, benthic, reef fishes are generally greater in more complex microhabitats, which can provide refuge from predators. We demonstrate that positive associations between densities of prey fishes and habitat complexity are stronger inside marine reserves, where predators are larger and more abundant. In the absence of any evidence for lower overall densities inside reserves (and thus any direct effect of predation), we consider the stronger habitat associations observed here are likely due to a behavioural risk effect: in the presence of abundant potential predators, prey fishes more strongly favour complex refuge-providing habitats.
    Digitale ISSN: 2045-7758
    Thema: Biologie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2016-03-12
    Beschreibung: The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus , the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus . Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation.
    Print ISSN: 1354-1013
    Digitale ISSN: 1365-2486
    Thema: Biologie , Energietechnik , Geographie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2016-02-11
    Beschreibung: Streams in the McMurdo Dry Valleys (MDVs) of Antarctica moderate an important hydrologic and biogeochemical connection between upland alpine glaciers, valley-bottom soils, and lowland closed-basin lakes. Moreover, MDV streams are simple but dynamic systems ideal for studying interacting hydrologic and ecological dynamics. This work synthesizes 20 years of hydrologic data, collected as part of the McMurdo Dry Valleys Long-Term Ecological Research project, to assess spatial and temporal dynamics of hydrologic connectivity between glaciers, streams, and lakes. Long-term records of stream discharge (Q), specific electrical conductance (EC), and water temperature (T) from 18 streams were analyzed in order to quantify the magnitude, duration, and frequency of hydrologic connections over daily, annual, and inter-annual timescales. At a daily timescale, we observe predictable diurnal variations in Q, EC, and T. At an annual timescale, we observe longer streams to be more intermittent, warmer, and have higher median EC values, compared to shorter streams. Longer streams also behave chemostatically with respect to EC, whereas shorter streams are more strongly characterized by dilution. Inter-annually, we observe significant variability in annual runoff volumes, likely due to climatic variability over the 20 record years considered. Hydrologic connections at all timescales are vital to stream ecosystem structure and function. This synthesis of hydrologic connectivity in the MDVs provides a useful end-member template for assessing hydrologic connectivity in more structurally complex temperate watersheds. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Digitale ISSN: 1099-1085
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-10-29
    Beschreibung: Ecological functions are coupled to the physical transport of water and solutes in streams. Transport of conservative tracers in lotic systems is subject to the processes of advection, dispersion, transient storage, and mass loss to groundwater. Stream tracer experiments and the simulation of observed tracer breakthrough curve (BTC) data with 1-D numerical transient storage models (TSMs) are commonly used to quantify these processes. Results from TSMs can be useful, but issues related to model appropriateness and parameter identifiability suggest a need for conceptually simpler approaches to BTC analyses. We present a new approach to analyze BTCs to quantify the amount of stream water transported by each dominant process. BTCs are analyzed to parse the total quantity of injected tracer mass into three dominant process domains: advection and dispersion, transient storage, and gross loss of tracer. This method can be used to quantify the relative influence of transport processes within, and among streams, and estimate the proportion of stream water associated with each mode of transport. As proof of concept, we apply this approach to conservative tracer injections on two streams of contrasting morphology. Application of this method indicates that transport of injected solute mass in an alluvial stream is dominated by advection and dispersion, relative to a beaded, peat-bottomed stream, where more tracer mass transport was found to be associated with longer timescale transient storage processes. This approach provides a simple, inexpensive, and useful quantification of dominant transport processes and provides an additional tool for analyzing experimental BTC data.
    Digitale ISSN: 1541-5856
    Thema: Biologie , Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-05-09
    Beschreibung: Concentration-discharge (C-Q) relationships are often used to quantify source water contributions and biogeochemical processes occurring within catchments, especially during discrete hydrological events. Yet, the interpretation of C-Q hysteresis is often confounded by complexity of the critical zone, such as numerous source waters and hydrochemical non-stationarity. Consequently, researchers must often ignore important runoff pathways and geochemical sources/sinks, especially the hyporheic zone because it lacks a distinct hydrochemical signature. Such simplifications limit efforts to identify processes responsible for the transience of C-Q hysteresis over time. To address these limitations, we leverage the hydrologic simplicity and long-term, high-frequency Q and electrical conductivity (EC) data from streams in the McMurdo Dry Valleys, Antarctica. In this two end-member system, EC can serve as a proxy for the concentration of solutes derived from the hyporheic zone. We utilize a novel approach to decompose loops into sub-hysteretic EC-Q dynamics to identify individual mechanisms governing hysteresis across a wide range of timescales. We find that hydrologic and hydraulic processes govern EC response to diel and seasonal Q variability and that the effects of hyporheic mixing processes on C-Q transience differ in short and long streams. We also observe that variable hyporheic turnover rates govern EC-Q patterns at daily to interannual timescales. Lastly, sub-hysteretic analysis reveals a period of interannual freshening of glacial meltwater streams related to the effects of unsteady flow on hyporheic exchange. The sub-hysteretic analysis framework we introduce may be applied more broadly to constrain the processes controlling C-Q transience and advance understanding of catchment evolution.
    Print ISSN: 0043-1397
    Digitale ISSN: 1944-7973
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2017-11-21
    Beschreibung: Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, a quantitative framework connecting surface temperature observations with conditions in the subsurface is currently lacking. Here, we model an area of shallow subsurface flow at Burgdorf Hot Springs, a rustic commercial resort in the Payette National Forest, north of McCall, Idaho USA. We calibrate the model using shallow (0.2 m depth) ground temperature measurements and overburden thickness estimates from seismic refraction studies. The calibrated model predicts negligible loss of heat energy from the laterally-migrating fluids at the Burgdorf site, in spite of the fact that thermal anomalies are observed in the unconsolidated near-surface alluvium. Although elevated near-surface ground temperatures are commonly assumed to result from locally high heat flux, this conflicts with the small apparent heat loss during lateral flow inferred at the Burgdorf site. We hypothesize an alternative explanation for near-surface temperature anomalies that is only weakly dependent on heat flux, and more strongly controlled by the Biot number, a dimensionless parameter that compares the rate at which convection carries heat away from the land surface to the rate at which it is supplied by conduction to the interface.
    Print ISSN: 0043-1397
    Digitale ISSN: 1944-7973
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2018-02-08
    Beschreibung: Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño-Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Digitale ISSN: 1365-2486
    Thema: Biologie , Energietechnik , Geographie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019
    Beschreibung: Abstract The McMurdo Dry Valleys (MDV) is a polar desert on the coast of East Antarctica where ephemeral wetlands become hydrologically active during warm and sunny summers when sub‐surface flows are generated from melting snowfields. To understand the structure and function of polar wetland ecosystems, we investigated the hydroecology of one such wetland, the Wormherder Creek wetland, during the warm and sunny summer of 2008 – 2009, when the wetland was hydrologically reactivated. Conservative tracer (LiCl) was injected for a 2‐hour period into a stream above the wetland to determine flow path orientations and hydrologic residence times. Tracer results indicated that surface water is rapidly exchanged with wetland groundwater and wetland residence times may exceed two austral summers. Major ion concentrations were uniform in samples from surface water and shallow groundwater throughout the wetland. Microbial mats in the wetland had high autotrophic index values (the ratios of chlorophyll a [Chl‐a]/ash‐free dry mass [AFDM]), ranging from 9‐38 μg Chl‐a/mg AFDM, indicative of actively photosynthesizing mat communities. The diatom communities in the mats were relatively uniform compared to those in mats from regularly flowing MDV streams, with four endemic and one widespread diatom taxa of the genus Luticola accounting for an average of 86% of the community. These results indicate that the hydrologic characteristics of the wetland contribute to uniform geochemical conditions. In turn, uniform geochemical conditions may explain the high autotrophic index values of the microbial mats and relatively low spatial variation of the diatom community.
    Print ISSN: 2169-8953
    Digitale ISSN: 2169-8961
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...