ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (210)
  • 2015-2019  (210)
Collection
Year
  • 1
    Publication Date: 2015-08-25
    Description: Motivation: Stoichiometric and constraint-based methods of computational strain design have become an important tool for rational metabolic engineering. One of those relies on the concept of constrained minimal cut sets (cMCSs). However, as most other techniques, cMCSs may consider only reaction (or gene) knockouts to achieve a desired phenotype. Results : We generalize the cMCSs approach to constrained regulatory MCSs (cRegMCSs), where up/downregulation of reaction rates can be combined along with reaction deletions. We show that flux up/downregulations can virtually be treated as cuts allowing their direct integration into the algorithmic framework of cMCSs. Because of vastly enlarged search spaces in genome-scale networks, we developed strategies to (optionally) preselect suitable candidates for flux regulation and novel algorithmic techniques to further enhance efficiency and speed of cMCSs calculation. We illustrate the cRegMCSs approach by a simple example network and apply it then by identifying strain designs for ethanol production in a genome-scale metabolic model of Escherichia coli. The results clearly show that cRegMCSs combining reaction deletions and flux regulations provide a much larger number of suitable strain designs, many of which are significantly smaller relative to cMCSs involving only knockouts. Furthermore, with cRegMCSs, one may also enable the fine tuning of desired behaviours in a narrower range. The new cRegMCSs approach may thus accelerate the implementation of model-based strain designs for the bio-based production of fuels and chemicals. Availability and implementation: MATLAB code and the examples can be downloaded at http://www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html . Contact : krishna.mahadevan@utoronto.ca or klamt@mpi-magdeburg.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-25
    Description: Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-20
    Description: Life-history theory predicts a trade-off between reproductive investment and self-maintenance. The negative association between fertility and longevity found throughout multicellular organisms supports this prediction. As an important exception, the reproductives of many eusocial insects (ants, bees, and termites) are simultaneously very long-lived and highly fertile. Here, we examine the proximate basis for this exceptional relationship by comparing whole-body transcriptomes of differently aged queens of the ant Cardiocondyla obscurior . We show that the sets of genes differentially expressed with age significantly overlap with age-related expression changes previously found in female Drosophila melanogaster. We identified several developmental processes, such as the generation of neurons, as common signatures of aging. More generally, however, gene expression in ant queens and flies changes with age mainly in opposite directions. In contrast to flies, reproduction-associated genes were upregulated and genes associated with metabolic processes and muscle contraction were downregulated in old relative to young ant queens. Furthermore, we searched for putative C. obscurior longevity candidates associated with the previously reported lifespan-prolonging effect of mating by comparing the transcriptomes of queens that differed in mating and reproductive status. We found 21 genes, including the putative aging candidate NLaz (an insect homolog of APOD ), which were consistently more highly expressed in short-lived, unmated queens than in long-lived, mated queens. Our study provides clear evidence that the alternative regulation of conserved molecular pathways that mediate the interplay among mating, egg laying, and aging underlies the lack of the fecundity/longevity trade-off in ant queens.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-29
    Description: Programmed stop codon readthrough is a post-transcription regulatory mechanism specifically increasing proteome diversity by creating a pool of C-terminally extended proteins. During this process, the stop codon is decoded as a sense codon by a near-cognate tRNA, which programs the ribosome to continue elongation. The efficiency of competition for the stop codon between release factors (eRFs) and near-cognate tRNAs is largely dependent on its nucleotide context; however, the molecular mechanism underlying this process is unknown. Here, we show that it is the translation initiation (not termination) factor, namely eIF3, which critically promotes programmed readthrough on all three stop codons. In order to do so, eIF3 must associate with pre-termination complexes where it interferes with the eRF1 decoding of the third/wobble position of the stop codon set in the unfavorable termination context, thus allowing incorporation of near-cognate tRNAs with a mismatch at the same position. We clearly demonstrate that efficient readthrough is enabled by near-cognate tRNAs with a mismatch only at the third/wobble position. Importantly, the eIF3 role in programmed readthrough is conserved between yeast and humans.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-27
    Description: Motivation: With the advent of meta-‘omics’ data, the use of metabolic networks for the functional analysis of microbial communities became possible. However, while network-based methods are widely developed for single organisms, their application to bacterial communities is currently limited. Results: Herein, we provide a novel, context-specific reconstruction procedure based on metaproteomic and taxonomic data. Without previous knowledge of a high-quality, genome-scale metabolic networks for each different member in a bacterial community, we propose a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions. Our approach was applied to draft the context-specific metabolic networks of two different naphthalene-enriched communities derived from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or without (CN1) bio-stimulation. We were able to capture the overall functional differences between the two conditions at the metabolic level and predict an important activity for the fluorobenzoate degradation pathway in CN1 and for geraniol metabolism in CN2. Experimental validation was conducted, and good agreement with our computational predictions was observed. We also hypothesize different pathway organizations at the organismal level, which is relevant to disentangle the role of each member in the communities. The approach presented here can be easily transferred to the analysis of genomic, transcriptomic and metabolomic data. Contact: fplanes@ceit.es or mferrer@icp.csic.es Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-20
    Description: Four antibiotics (pamamycin, oligomycin A, oligomycin B and echinosporin) were isolated and characterized from the fermentation broth of the marine Streptomyces strains B8496 and B8739. Bioassays revealed that each of these compounds impaired motility and caused subsequent lysis of P. viticola zoospores in a dose- and time-dependent manner. Pamamycin displayed the strongest motility inhibitory and lytic activities (IC 50 0.1 μg mL –1 ) followed by oligomycin B (IC 50 0.15 and 0.2 μg mL –1 ) and oligomycin F (IC 50 0.3 and 0.5 μg mL –1 ). Oligomycin A and echinosporin also showed motility inhibitory activities against the zoospores with IC 50 values of 3.0 and 10.0 μg mL –1 , respectively. This is the first report of motility inhibitory and lytic activities of these antibiotics against zoospores of a phytopathogenic peronosporomycete. Structures of all the isolated compounds were determined based on detailed spectroscopic analysis.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-16
    Description: While Hymenoscyphus fraxineus causes dieback of the European ash ( Fraxinus excelsior ), flowering ash ( F. ornus ) appears resistant to the pathogen. To date, contributions of endophytic fungi to host resistance are unknown. The following hypotheses were tested: (i) endophytic fungi enhance the resistance of F. excelsior to the pathogen; (ii) resistance of F. ornus relies on its community of endophytic fungi. Two experiments were performed. (i) The effect of exudates of ash endophytes on the germination rate of H. fraxineus ascospores was studied in vitro . Isolates of abundant Fraxinus leaf endophytes, such as Venturia fraxini, Paraconiothyrium sp., Boeremia exigua, Kretzschmaria deusta and Neofabraea alba inhibited ascospore germination. (ii) Ash seedlings inoculated in a climate chamber, with fungi sporulating on the previous year's leaf litter, were exposed to natural infections by the pathogen present in the forest. Non-inoculated seedlings were used as controls. Venturia spp. dominated the inoculated endophyte ‘communities’. Subsequent exposure to H. fraxineus led to infection of F. excelsior leaves by the pathogen, but no differences in health status between pre-inoculated and non-inoculated seedlings were detected. Fraxinus ornus leaves experienced a low infection rate, independent of their colonization by endophytic fungi. These results did not support either hypothesis.
    Print ISSN: 0168-6496
    Electronic ISSN: 1574-6941
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-19
    Description: Gene expression levels change as an individual ages and responds to environmental conditions. With the exception of humans, such patterns have principally been studied under controlled conditions, overlooking the array of developmental and environmental influences that organisms encounter under conditions in which natural selection operates. We used high-throughput RNA sequencing (RNA-Seq) of whole blood to assess the relative impacts of social status, age, disease, and sex on gene expression levels in a natural population of gray wolves ( Canis lupus ). Our findings suggest that age is broadly associated with gene expression levels, whereas other examined factors have minimal effects on gene expression patterns. Further, our results reveal evolutionarily conserved signatures of senescence, such as immunosenescence and metabolic aging, between wolves and humans despite major differences in life history and environment. The effects of aging on gene expression levels in wolves exhibit conservation with humans, but the more rapid expression differences observed in aging wolves is evolutionarily appropriate given the species’ high level of extrinsic mortality due to intraspecific aggression. Some expression changes that occur with age can facilitate physical age-related changes that may enhance fitness in older wolves. However, the expression of these ancestral patterns of aging in descendant modern dogs living in highly modified domestic environments may be maladaptive and cause disease. This work provides evolutionary insight into aging patterns observed in domestic dogs and demonstrates the applicability of studying natural populations to investigate the mechanisms of aging.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-27
    Description: Increasing morbidity and mortality from Clostridium difficile infection (CDI) present an enormous challenge to healthcare systems. Clostridium difficile express type IV pili (T4P), but their function remains unclear. Many chronic and recurrent bacterial infections result from biofilms, surface-associated bacterial communities embedded in an extracellular matrix. CDI may be biofilm mediated; T4P are important for biofilm formation in a number of organisms. We evaluate the role of T4P in C. difficile biofilm formation using RNA sequencing, mutagenesis and complementation of the gene encoding the major pilin pilA1 , and microscopy. RNA sequencing demonstrates that, in comparison to other growth phenotypes, C. difficile growing in a biofilm has a distinct RNA expression profile, with significant differences in T4P gene expression. Microscopy of T4P-expressing and T4P-deficient strains suggests that T4P play an important role in early biofilm formation. A non-piliated pilA1 mutant forms an initial biofilm of significantly reduced mass and thickness in comparison to the wild type. Complementation of the pilA1 mutant strain leads to formation of a biofilm which resembles the wild-type biofilm. These findings suggest that T4P play an important role in early biofilm formation. Novel strategies for confronting biofilm infections are emerging; our data suggest that similar strategies should be investigated in CDI.
    Print ISSN: 0928-8244
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-05-09
    Description: Carotenoids are currently investigated regarding their potential to lower the risk of chronic disease and to combat vitamin A deficiency. Surprisingly, responses to dietary supplementation with these compounds are quite variable between individuals. Genome-wide studies have associated common genetic polymorphisms in the BCO1 gene with this variability. The BCO1 gene encodes an enzyme that is expressed in the intestine and converts provitamin A carotenoids to vitamin A-aldehyde. However, it is not clear how this enzyme can impact the bioavailability and metabolism of other carotenoids such as xanthophyll. We here provide evidence that BCO1 is a key component of a regulatory network that controls the absorption of carotenoids and fat-soluble vitamins. In this process, conversion of β-carotene to vitamin A by BCO1 induces via retinoid signaling the expression of the intestinal homeobox transcription factor ISX. Subsequently, ISX binds to conserved DNA-binding motifs upstream of the BCO1 and SCARB1 genes. SCARB1 encodes a membrane protein that facilitates absorption of fat-soluble vitamins and carotenoids. In keeping with its role as a transcriptional repressor, SCARB1 protein levels are significantly increased in the intestine of ISX-deficient mice. This increase results in augmented absorption and tissue accumulation of xanthophyll carotenoids and tocopherols. Our study shows that fat-soluble vitamin and carotenoid absorption is controlled by a BCO1-dependent negative feedback regulation. Thus, our findings provide a molecular framework for the controversial relationship between genetics and fat-soluble vitamin status in the human population.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...