ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (2)
  • 2015-2019  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2015-11-13
    Description: The elemental abundances of symbiotic giants are essential to address the role of chemical composition in the evolution of symbiotic binaries, to map their parent population, and to trace their mass transfer history. However, the number of symbiotic giants with fairly well determined photospheric composition is still insufficient for statistical analyses. This is the third in a series of papers on the chemical composition of symbiotic giants determined from high-resolution ( R  ~ 50 000), near-infrared spectra. Here we present results for 24 S-type systems. Spectrum synthesis methods employing standard local thermal equilibrium analysis and atmosphere models were used to obtain photospheric abundances of CNO and elements around the iron peak (Fe, Ti, Ni, and Sc). Our analysis reveals metallicities distributed in a wide range from slightly supersolar ([Fe/H] ~ +0.35 dex) to significantly subsolar ([Fe/H] ~ –0.8 dex) but principally with near-solar and slightly subsolar metallicity ([Fe/H] ~ –0.4 to –0.3 dex). The enrichment in 14 N isotope, found in all these objects, indicates that the giants have experienced the first dredge-up. This was confirmed in a number of objects by the low 12 C/ 13 C ratio (5–23). We found that the relative abundance of [Ti/Fe] is generally large in red symbiotic systems.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-16
    Description: Summary Standard bioinformatics pipelines for the analysis of bacterial transcriptomic data commonly ignore non-coding but functional elements e.g. small RNAs, long antisense RNAs or untranslated regions (UTRs) of mRNA transcripts. The root of this problem is the use of incomplete genome annotation files. Here, we present baerhunter, a coverage-based method implemented in R, that automates the discovery of expressed non-coding RNAs and UTRs from RNA-seq reads mapped to a reference genome. The core algorithm is part of a pipeline that facilitates downstream analysis of both coding and non-coding features. The method is simple, easy to extend and customize and, in limited tests with simulated and real data, compares favourably against the currently most popular alternative. Availability and implementation The baerhunter R package is available from: https://github.com/irilenia/baerhunter Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...