ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (6)
  • Informa UK Limited
  • 2015-2019  (6)
  • 1
    Publication Date: 2015-06-06
    Description: Especially in the remote sensing context, thematic classification is a desired product for coral reef surveys. This study presents a novel statistical-based image classification approach, namely Partial Least Square Discriminant Analysis (PLS-DA), capable of doing so. Three classification models were built and implemented for the images while the fourth was a combination of spectra from all three images together. The classification was optimised by using pre-processing transformations (PPTs) and post-classification low-pass filtering. Despite the fact that the images were acquired under different conditions and quality, the best classification model was achieved by combining spectral training samples from three images (accuracy 0.63 for all classes). PPTs improved the classification accuracy by 5%–15% and post-classification treatments further increased the final accuracy by 10%–20%. The fourth classification model was the most accurate one, suggesting that combining spectra from differ conditions improves thematic classification. Despite some limitations, available aerial sensors already provide an opportunity to implement the described classification and mark the next investigation step. Nonetheless, the findings of this study are relevant both to the field of remote sensing in general and to the niche of coral reef spectroscopy.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-11
    Description: The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST). However, calibration notices issued by the United States Geological Survey (USGS) indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS) Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW) algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature) were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC) algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial variation of the extremely hot weather, a frequently-occurring phenomenon of an abnormal heat flux process in summer along the Yangtze River Basin, had been thoroughly analyzed. This successful application suggested that the IMW algorithm presented in the study could be used as an efficient method for LST retrieval from the Landsat 8 TIRS Band 10 data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-24
    Description: Soil quality (SQ) assessment has numerous applications for managing sustainable soil function. Airborne imaging spectroscopy (IS) is an advanced tool for studying natural and artificial materials, in general, and soil properties, in particular. The primary goal of this research was to prove and demonstrate the ability of IS to evaluate soil properties and quality across anthropogenically induced land-use changes. This aim was fulfilled by developing and implementing a spectral soil quality index (SSQI) using IS obtained by a laboratory and field spectrometer (point scale) as well as by airborne hyperspectral imaging (local scale), in two experimental sites located in Israel and Germany. In this regard, 13 soil physical, biological, and chemical properties and their derived soil quality index (SQI) were measured. Several mathematical/statistical procedures, consisting of a series of operations, including a principal component analysis (PCA), a partial least squares-regression (PLS-R), and a partial least squares-discriminate analysis (PLS-DA), were used. Correlations between the laboratory spectral values and the calculated SQI coefficient of determination (R2) and ratio of performance to deviation (RPD) were R2 = 0.84; RPD = 2.43 and R2 = 0.78; RPD = 2.10 in the Israeli and the German study sites, respectively. The PLS-DA model that was used to develop the SSQI showed high classification accuracy in both sites (from laboratory, field, and imaging spectroscopy). The correlations between the SSQI and the SQI were R2 = 0.71 and R2 = 0.7, in the Israeli and the German study sites, respectively. It is concluded that soil quality can be effectively monitored using the spectral-spatial information provided by the IS technology. IS-based classification of soils can provide the basis for a spatially explicit and quantitative approach for monitoring SQ and function at a local scale.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-31
    Description: Remote Sensing, Vol. 9, Pages 1099: Linear Multi-Task Learning for Predicting Soil Properties Using Field Spectroscopy Remote Sensing doi: 10.3390/rs9111099 Authors: Haijun Qi Tarin Paz-Kagan Arnon Karnieli Shaowen Li Field spectroscopy has been suggested to be an efficient method for predicting soil properties using quantitative mathematical models in a rapid and non-destructive manner. Traditional multivariate regression algorithms usually regard the modeling of each soil property as a single task, which means only one response variable is considered as the output during modeling. Therefore, these algorithms are less suitable for the prediction of several key soil properties with low concentrations or unobvious spectral absorption signals. In the current study, we investigated the performance of a linear multi-task learning (LMTL) algorithm based on a regularized dirty model for modeling and predicting several key soil properties using field spectroscopy (350–2500 nm) as an integrated approach. We tested seven key soil properties including available nitrogen (N), phosphorus (P) and potassium (K), pH, water content (WC), organic matter (OM), and electrical conductivity (EC) in drylands. The model performances of LMTL models were compared with the commonly used single-task algorithm of the partial least squares regression (PLS-R). Our results show that the LMTL models outperformed the PLS-R models with the advantage of shared features; the ratio of performance to deviation (RPD) values in the validation set improved by 10.24%, 4.93%, 25.77%, 11.76%, 6.74%, 53.13%, and 3.15% for N, P, K, pH, WC, OM, and EC, respectively. The best prediction was obtained for OM with RPD = 2.29, indicating high accuracy (RPD > 2). The prediction results of N, P, WC, and pH were categorized as of moderate accuracy (1.4 < RPD < 2), while K and EC were categorized as of poor accuracy (RPD < 1.4). However, the explanatory power of the LMTL models was moderate due to fewer features being selected by the regularization algorithm of the LMTL approach, which should be further studied in the soil spectral analysis. Our results highlight the use of LMTL in field spectroscopy analysis that can improve the generalization performance of regression models for predicting soil properties.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-09
    Description: Remote Sensing, Vol. 10, Pages 419: Shortwave Radiation Affected by Agricultural Practices Remote Sensing doi: 10.3390/rs10030419 Authors: Jerzy Cierniewski Jakub Ceglarek Arnon Karnieli Eyal Ben-Dor Sławomir Królewicz Cezary Kaźmierowski The albedo of bare soil depends on its organic matter, iron oxide, carbonate contents, and reflectance geometry, features considered stable over time, and also depends on salinity, moisture and roughness, which change dynamically due to agricultural practices. This paper deals with the quantitative estimation of the amount of shortwave radiation that could be reflected by air-dried bare soils in clear-sky conditions within arable lands in Israel throughout the year, assuming that they were shaped by a plough, a disk harrow, or a smoothing harrow. An area of bare soils was extracted from Landsat 8 images, within the contours of arable lands. The radiation reflected from the bare soils was calculated by equations predicting variations in their half-diurnal albedo as the solar zenith angle function. Accordingly, laboratory reflectance data of Israeli soil samples were used. The results clearly showed annual variation in the amount of short-wave radiation reflected from all bare soils within arable lands. The minimum radiation occurred in the winter, between the 1st and 70th day of the year (DOY), and the maximum was identified in the summer between 200th and 250th DOY. This could reach about 3–5 PJ/day and 16–23 PJ/day, respectively.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-06
    Description: Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...