ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-22
    Description: Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modelling fish biomass at the global scale. The ecological model is designed to be used on an Earth-system model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how they change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modelling efforts, while retaining reasonably realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-02
    Description: Although long assumed that the glacial-interglacial cycles of atmospheric CO2 occurred despite a constant active carbon inventory, there are signs that the geological CO2 supply rates varied. However, changes of the carbon inventory cannot be assessed without constraining the removal rates from the system, which mainly occurs in marine sediments. Here, we present the first global reconstruction of carbon and alkalinity burial in deep-sea sediments over the last glacial cycle. Although subject to large uncertainties, the reconstruction provides a first order constraint on changes in carbon and alkalinity inventories over the last glacial cycle. The results suggest that reduced burial of carbonate in the Atlantic Ocean was not entirely compensated by the increased burial in the Pacific basin during the last glacial period. The burial-driven inventory variations are likely to have significantly altered the δ13C of the ocean-atmosphere carbon, as well as the DIC and alkalinity budget, confirming that the active carbon inventory was a dynamic, interactive component of the glacial cycles.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-28
    Description: Although it has long been assumed that the glacial–interglacial cycles of atmospheric CO2 occurred due to increased storage of CO2 in the ocean, with no change in the size of the “active” carbon inventory, there are signs that the geological CO2 supply rate to the active pool varied significantly. The resulting changes of the carbon inventory cannot be assessed without constraining the rate of carbon removal from the system, which largely occurs in marine sediments. The oceanic supply of alkalinity is also removed by the burial of calcium carbonate in marine sediments, which plays a major role in air–sea partitioning of the active carbon inventory. Here, we present the first global reconstruction of carbon and alkalinity burial in deep-sea sediments over the last glacial cycle. Although subject to large uncertainties, the reconstruction provides a first-order constraint on the effects of changes in deep-sea burial fluxes on global carbon and alkalinity inventories over the last glacial cycle. The results suggest that reduced burial of carbonate in the Atlantic Ocean was not entirely compensated by the increased burial in the Pacific basin during the last glacial period, which would have caused a gradual buildup of alkalinity in the ocean. We also consider the magnitude of possible changes in the larger but poorly constrained rates of burial on continental shelves, and show that these could have been significantly larger than the deep-sea burial changes. The burial-driven inventory variations are sufficiently large to have significantly altered the δ13C of the ocean–atmosphere carbon and changed the average dissolved inorganic carbon (DIC) and alkalinity concentrations of the ocean by more than 100 µM, confirming that carbon burial fluxes were a dynamic, interactive component of the glacial cycles that significantly modified the size of the active carbon pool. Our results also suggest that geological sources and sinks were significantly unbalanced during the late Holocene, leading to a slow net removal flux on the order of 0.1 PgC yr−1 prior to the rapid input of carbon during the industrial period.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...