ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)
  • 2015-2019  (79)
  • 1
    Publication Date: 2016-11-01
    Description: Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals propagating excitations whose dispersion at long wavelengths is compatible with the experimental sound velocity. Results are also reported for other transport coefficients. Additional simulations have also been performed so as to study the structure of the free liquid surface. The calculated longitudinal ionic density profile shows an oscillatory behaviour, whose properties are analyzed through macroscopic and microscopic methods. The intrinsic X-ray reflectivity of the surface is predicted to show a layering peak associated to the interlayer distance.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-12
    Description: The explicit consideration of the vector correlations is an essential step when it comes to determining the mechanism of chemical reactions. Usual vector correlations involve initial and final relative velocity vectors and rotational angular momenta. However, the correlation between the orbital, ℓ , and rotational, j , angular momenta has seldom received any attention. In this article, we present a semiclassical methodology capable of describing the ℓ – j correlation that may serve as a connection between the quantum and quasiclassical treatments. Using the scattering matrix in the orbital angular momentum representation, the ℓ – j correlation is expressed as a probability density function of the angle formed by both vectors. This technique is exemplified through the H + D 2 reaction and its accuracy is appraised by comparing with results derived from calculations based on quasiclassical trajectories.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-11
    Description: The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-22
    Description: In this work, a new rigid-nonpolarizable model of methanol is proposed. The model has three sites, located at the same positions as those used in the OPLS model previously proposed by Jorgensen [J. Phys. Chem. 90 , 1276 (1986)]. However, partial charges and the values of the Lennard-Jones parameters were modified by fitting to an adequately selected set of target properties including solid-fluid experimental data. The new model was denoted as OPLS/2016. The overall performance of this model was evaluated and compared to that obtained with other popular models of methanol using a similar test to that recently proposed for water models. In the test, a certain numerical score is given to each model. It was found that the OPLS/2016 obtained the highest score (7.4 of a maximum of 10) followed by L1 (6.6), L2 (6.4), OPLS (5.8), and H1 (3.5) models. The improvement of OPLS/2016 with respect to L1 and L2 is mainly due to an improvement in the description of fluid-solid equilibria (the melting point is only 14 K higher than the experimental value). In addition, it was found that no methanol model was able to reproduce the static dielectric constant and the isobaric heat capacity, whereas the better global performance was found for models that reproduce the vaporization enthalpy once the so-called polarization term is included. Similar conclusions were suggested previously in the analysis of water models and are confirmed here for methanol.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-08-06
    Description: We demonstrate direct experimental evidence of domain wall motion driven by a magnetic field in a magnetic microwire. The velocity of the elliptically shaped domain wall significantly increases with increasing domain wall inclination with respect to the axis of the wire. The Walker breakdown has been found in the presence of circular magnetic field. We develop an analytical model describing the motion of inclined elliptically shaped domain walls in a steady regime. The controllable mobility of the domain wall using ultra-low magnetic field is determined by the increase of domain wall length.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-20
    Description: We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x  = 0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the Mn Ga substitution is the most stable configuration with a formation energy of ∼1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0  μ B /Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn- d and Sb- p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-21
    Description: The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-04
    Description: A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-04
    Description: The striking behavior of water has deserved it to be referred to as an “anomalous” liquid. The water anomalies are greatly amplified in metastable (supercooled and/or stretched) regions. This makes difficult a complete experimental description since, beyond certain limits, the metastable phase necessarily transforms into the stable one. Theoretical interpretation of the water anomalies could then be based on simulation results of well validated water models. But the analysis of the simulations has not yet reached a consensus. In particular, one of the most popular theoretical scenarios—involving the existence of a liquid-liquid critical point (LLCP)—is disputed by several authors. In this work, we propose to use a number of exact thermodynamic relations which may shed light on this issue. Interestingly, these relations may be tested in a region of the phase diagram which is outside the LLCP thus avoiding the problems associated to the coexistence region. The central property connected to other water anomalies is the locus of temperatures at which the density along isobars attain a maximum (TMD line) or a minimum (TmD). We have performed computer simulations to evaluate the TMD and TmD for a successful water model, namely, TIP4P/2005. We have also evaluated the vapor-liquid (VL) spinodal in the region of large negative pressures. The shape of these curves and their connection to the extrema of some response functions, in particular the isothermal compressibility and heat capacity at constant pressure, provides very useful information which may help to elucidate the validity of the theoretical proposals. In this way, we are able to present for the first time a comprehensive scenario of the thermodynamic water anomalies for TIP4P/2005 and their relation to the vapor-liquid spinodal. The overall picture shows a remarkable similarity with the corresponding one for the ST2 water model, for which the existence of a LLCP has been demonstrated in recent years. It also provides a hint as to where the long-sought for extrema in response functions might become accessible to experiments.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-23
    Description: Series of GaN nanowires (NW) with controlled diameters (160–500 nm) and heights (420–1100 nm) were homoepitaxially grown on three different templates: GaN/Si(111), GaN/AlN/Si(111), and GaN/sapphire(0001). Transmission electron microscopy reveals a strong influence of the NW diameter on dislocation filtering effect, whereas photoluminescence measurements further relate this effect to the GaN NWs near-bandgap emission efficiency. Although the templates' quality has some effects on the GaN NWs optical and structural properties, the NW diameter reduction drives the dislocation filtering effect to the point where a poor GaN template quality becomes negligible. Thus, by a proper optimization of the homoepitaxial GaN NWs growth, the propagation of dislocations into the NWs can be greatly prevented, leading to an exceptional crystal quality and a total dominance of the near-bandgap emission over sub-bandgap, defect-related lines, such as basal stacking faults and so called unknown exciton (UX) emission. In addition, a correlation between the presence of polarity inversion domain boundaries and the UX emission lines around 3.45 eV is established.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...