ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (35)
  • American Institute of Physics (AIP)
  • Institute of Physics (IOP)
  • 2015-2019  (50)
  • 1
    Publication Date: 2015-08-11
    Description: In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al 2 O 3 were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al 2 O 3 pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-06
    Description: Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-20
    Description: This paper pays attention to magnetic flux linkage optimization of a direct-driven surface-mounted permanent magnet synchronous generator (D-SPMSG). A new compact representation of the D-SPMSG nonlinear dynamic differential equations to reduce system parameters is established. Furthermore, the nonlinear dynamic characteristics of new D-SPMSG equations in the process of varying magnetic flux linkage are considered, which are illustrated by Lyapunov exponent spectrums, phase orbits, Poincaré maps, time waveforms and bifurcation diagrams, and the magnetic flux linkage stable region of D-SPMSG is acquired concurrently. Based on the above modeling and analyses, a novel method of magnetic flux linkage optimization is presented. In addition, a 2 MW D-SPMSG 2D/3D model is designed by ANSYS software according to the practical design requirements. Finally, five cases of D-SPMSG models with different magnetic flux linkages are simulated by using the finite element analysis (FEA) method. The nephograms of magnetic flux density are agreement with theoretical analysis, which both confirm the correctness and effectiveness of the proposed approach.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-07
    Description: Quantifying the variability and changes in phenology and gross primary production (GPP) of alpine wetlands in the Qinghai–Tibetan Plateau under climate change is essential for assessing carbon (C) balance dynamics at regional and global scales. In this study, in situ eddy covariance (EC) flux tower observations and remote sensing data were integrated with a modified, satellite-based vegetation photosynthesis model (VPM) to investigate the variability in climate change, phenology, and GPP of an alpine wetland ecosystem, located in Zoige, southwestern China. Two-year EC data and remote sensing vegetation indices showed that warmer temperatures corresponded to an earlier start date of the growing season, increased GPP, and ecosystem respiration, and hence increased the C sink strength of the alpine wetlands. Twelve-year long-term simulations (2000–2011) showed that: (1) there were significantly increasing trends for the mean annual enhanced vegetation index (EVI), land surface water index (LSWI), and growing season GPP (R2 ≥ 0.59, p 〈 0.01) at rates of 0.002, 0.11 year−1 and 16.32 g·C·m−2·year−1, respectively, which was in line with the observed warming trend (R2 = 0.54, p = 0.006); (2) the start and end of the vegetation growing season (SOS and EOS) experienced a continuous advancing trend at a rate of 1.61 days·year−1 and a delaying trend at a rate of 1.57 days·year−1 from 2000 to 2011 (p ≤ 0.04), respectively; and (3) with increasing temperature, the advanced SOS and delayed EOS prolonged the wetland’s phenological and photosynthetically active period and, thereby, increased wetland productivity by about 3.7–4.2 g·C·m−2·year−1 per day. Furthermore, our results indicated that warming and the extension of the growing season had positive effects on carbon uptake in this alpine wetland ecosystem.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-06
    Description: The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG) error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS) degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA) on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes’ pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost) of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS) approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-01
    Description: Generally, the phase structure change of Pb(B′ B″)O 3 –PZT solid solutions near a morphotropic phase boundary (MPB) can be originated from composition variations. Here our results show that the excess PbO and the sintering temperature can also result in the ferroelectric phase structure change in the Pb(Ni 1/3 Nb 2/3 )O 3 –Pb(Zr,Ti)O 3 (PNN–PZT)-based ceramics near the MPB. The dielectric, piezoelectric, and ferroelectric properties are dependent on the tetragonal phase content ( TP ) which is closely associated with the excess PbO and the sintering temperature. The temperature dependence of the polarization ( P )–electric field ( E ) hysteresis loops reveals that the tetragonal phase in the PNN–PZT-based ceramics has a lower activation energy ( E a ) for domain wall movement than that of the rhombohedral phase, thus resulting in easier polarization rotation. This is responsible for the phase structure–electrical property relationships in the PNN–PZT-based ceramics, exhibiting the dependence of the tetragonal phase content ( TP ) on the electrical properties.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-29
    Description: In this paper, we study the long time behavior of solutions to a weakly dissipative fractional Korteweg de Vries (KdV) equation on the real line R . The main difficulty lies in that the dissipative term is a nonlocal operator. We overcome this difficulty by the commutator estimates and product estimates associated with fractional Laplacian. The asymptotical compactness of solution semigroup is proved by the tail estimates. Finally, we conclude the existence of ( H 2 ( R ), H 5 ( R )) global attractor of the weakly dissipative fractional KdV equation.
    Print ISSN: 0022-2488
    Electronic ISSN: 1089-7658
    Topics: Mathematics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-30
    Description: In this research a DNA aptamer, which was selected through SELEX (systematic evolution of ligands by exponential enrichment) to be specific against the H5N1 subtype of the avian influenza virus (AIV), was used as an alternative reagent to monoclonal antibodies in an impedance biosensor utilizing a microfluidics flow cell and an interdigitated microelectrode for the specific detection of H5N1 AIV. The gold surface of the interdigitated microelectrode embedded in a microfluidics flow cell was modified using streptavidin. The biotinylated aptamer against H5N1 was then immobilized on the electrode surface using biotin–streptavidin binding. The target virus was captured on the microelectrode surface, causing an increase in impedance magnitude. The aptasensor had a detection time of 30 min with a detection limit of 0.0128 hemagglutinin units (HAU). Scanning electron microscopy confirmed the binding of the target virus onto the electrode surface. The DNA aptamer was specific to H5N1 and had no cross-reaction to other subtypes of AIV (e.g., H1N1, H2N2, H7N2). The newly developed aptasensor offers a portable, rapid, low-cost alternative to current methods with the same sensitivity and specificity.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-09
    Description: Dual-wavelength laser emission is achieved by using an active/inactive/active sandwich-like structure, which can be conveniently fabricated using spin coating technique. Poly [(9, 9-dioctylfluorenyl-2, 7-diyl)-alt-co-(1, 4-benzo-(2, 1′, 3) -thiadiazole)] and polyvinyl alcohol are employed as the active and the inactive materials, respectively. Two laser wavelengths are simultaneously observed, which are attributed to the difference of the surrounding refractive index of two active waveguides in the sandwich-like structure. Each wavelength is controlled by the respective waveguide structure, meaning that multi-wavelength laser can be designed by stacking the active/inactive layer pair. These results provide more flexibility to design compact laser sources.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-17
    Description: The use of hexagonal boron nitride (h-BN) in microfluidic and nanofluidic applications requires a fundamental understanding of the interaction between water and the h-BN surface. A crucial component of the interaction is the binding energy, which is sensitive to the treatment of electron correlation. In this work, we use state of the art quantum Monte Carlo and quantum chemistry techniques to compute the binding energy. Compared to high-level many-body theory, we found that the second-order Møller-Plesset perturbation theory captures the interaction accurately and can thus be used to develop force field parameters between h-BN and water for use in atomic scale simulations. On the contrary, density functional theory with standard dispersion corrections tends to overestimate the binding energy by approximately 75%.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...