ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-03
    Description: The open-source programming language R has gained a central place in the hydrological sciences over the last decade, driven by the availability of diverse hydro-meteorological data archives and the development of open-source computational tools. The growth of R's usage in hydrology is reflected in the number of newly published hydrological packages, the strengthening of online user communities, and the popularity of training courses and events. In this paper, we explore the benefits and advantages of R's usage in hydrology, such as the democratization of data science and numerical literacy, the enhancement of reproducible research and open science, the access to statistical tools, the ease of connecting R to and from other languages, and the support provided by a growing community. This paper provides an overview of a typical hydrological workflow based on reproducible principles and packages for retrieval of hydro-meteorological data, spatial analysis, hydrological modelling, statistics, and the design of static and dynamic visualizations and documents. We discuss some of the challenges that arise when using R in hydrology and useful tools to overcome them, including the use of hydrological libraries, documentation, and vignettes (long-form guides that illustrate how to use packages); the role of integrated development environments (IDEs); and the challenges of big data and parallel computing in hydrology. Lastly, this paper provides a roadmap for R's future within hydrology, with R packages as a driver of progress in the hydrological sciences, application programming interfaces (APIs) providing new avenues for data acquisition and provision, enhanced teaching of hydrology in R, and the continued growth of the community via short courses and events.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 135 (1935), S. 623-623 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] IN a letter in NATURE of February 2 (p. 265) Prof. J. Walton has remarked that infra-red photography of thin sections of coal should give interesting results. We would like to direct attention to some results of work on this subject. We should mention first that there are already some ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 8 (1916), S. 789-792 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-21
    Description: Conceptual models for the geophysical responses associated with hydrocarbon degradation suggest that the long-term evolution of an oil plume will result in a more conductive anomaly than the initial contamination. In response to the Deepwater Horizon (DH) oil spill into the Gulf of Mexico in 2010, an autonomous resistivity monitoring system was deployed on Grand Terre, Louisiana, in an attempt to monitor natural degradation processes in hydrocarbon-impacted beach sediments of this island. A 48-electrode surface array with a 0.5-m spacing was installed to obtain twice-daily images of the resistivity structure of the shallow subsurface impacted by oil. Over the course of approximately 18 months, we observed a progressive decrease in the resistivity of the DH spill-impacted region. Detailed analysis of pixel/point resistivity variation within the imaged area showed that long-term decreases in resistivity were largely associated with the DH-impacted sediments. A microbial diversity survey revealed the presence of hydrocarbon-degrading organisms throughout the test site. However, hydrocarbon degradation activity was much higher in the DH-impacted locations compared to nonimpacted locations, suggesting the presence of active hydrocarbon degraders, supporting biodegradation processes. The results of this long-term monitoring experiment suggested that resistivity might be used to noninvasively monitor the long-term degradation of crude oil spills.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Spectral induced polarization (SIP), describing the measurement of the frequency domain electrical impedance magnitude and phase of porous materials, has been widely used to characterize subsurface hydrological/biogeochemical properties and processes. SIP data collected at frequencies higher than 100 Hz are expected to describe the polarization of small particles providing insights into the physicochemical properties of clays, nanoparticles and microorganisms. However, the phase measurements at these high frequencies are often contaminated by errors due to the parasitic capacitive coupling of the SIP instrument, especially for lower conductivity samples. We developed a model showing the measured phase is the sum of the true sample phase and an error term 〈span〉ωC〈/span〉〈sub〉in〈/sub〉〈span〉Z〈/span〉〈sub〉x〈/sub〉, where 〈span〉ω〈/span〉 is the angular frequency; 〈span〉C〈/span〉〈sub〉in〈/sub〉 is the instrument input capacitance and 〈span〉Z〈/span〉〈sub〉x〈/sub〉 is a measurable impedance function related to the sample holder properties and the reference resistor. Based on this model, a new phase correction method is proposed that results in highly accurate SIP data up to 20 kHz as well as the determination of 〈span〉C〈/span〉〈sub〉in〈/sub〉. We tested the correction method using electric circuits, NaCl fluids and three unconsolidated samples (sand, sand-clay and sand-pyrite mixtures). The corrected phase for the circuit and NaCl fluid experiments showed excellent agreement with the theoretical phase response across the studied frequency range (errors 〈1 mrad). For unconsolidated samples, removal of errors results in phase spectra more consistent with expected polarization mechanisms, as based on phase peaks recorded for small pyrite and clay particles at high frequencies. These phase peaks could not be identified in the uncorrected data. Our approach can substantially enhance the value of the SIP method for the characterization of fine-grained sediments and rocks.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Spectral induced polarization (SIP), describing the measurement of the frequency domain electrical impedance magnitude and phase of porous materials, has been widely used to characterize subsurface hydrological/biogeochemical properties and processes. SIP data collected at frequencies higher than 100 Hz are expected to describe the polarization of small particles providing insights into the physicochemical properties of clays, nanoparticles and microorganisms. However, the phase measurements at these high frequencies are often contaminated by errors due to the parasitic capacitive coupling of the SIP instrument, especially for lower conductivity samples. We developed a model showing the measured phase is the sum of the true sample phase and an error term 〈span〉ωC〈/span〉〈sub〉in〈/sub〉〈span〉Z〈/span〉〈sub〉x〈/sub〉, where 〈span〉ω〈/span〉 is the angular frequency; 〈span〉C〈/span〉〈sub〉in〈/sub〉 is the instrument input capacitance and 〈span〉Z〈/span〉〈sub〉x〈/sub〉 is a measurable impedance function related to the sample holder properties and reference resistor. Based on this model, a new phase correction method is proposed that results in highly accurate SIP data up to 20 kHz as well as the determination of 〈span〉C〈/span〉〈sub〉in〈/sub〉. We tested the correction method using electric circuits, NaCl fluids and three unconsolidated samples (sand, sand-clay and sand-pyrite mixtures). The corrected phase for the circuit and NaCl fluid experiments showed excellent agreement with the theoretical phase response across the studied frequency range (errors 〈 1 mrad). For unconsolidated samples, removal of errors results in phase spectra more consistent with expected polarization mechanisms, as based on phase peaks recorded for small pyrite and clay particles at high frequencies. These phase peaks could not be identified in the uncorrected data. Our approach can substantially enhance the value of the SIP method for the characterization of fine-grained sediments and rocks.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-08-11
    Keywords: Geochemistry, Geophysics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-08
    Description: Accurate estimation of the hydrological properties of near-surface aquifers is important because these properties strongly influence groundwater flow and solute transport. Laboratory-based investigations have indicated that induced polarization (IP) properties of porous media may be linked, through either semiempirical or fully mechanistic models, to hydrological properties including hydraulic conductivity. Therefore, there is a need for field assessments of the value of IP measurements in providing insights into the hydrological properties of aquifers. A cross-borehole IP survey was carried out at the Boise Hydrogeophysical Research Site (BHRS), an unconsolidated fluvial aquifer that has previously been well-studied with a variety of geophysical and hydrogeologic techniques. High-quality IP measurements were inverted, with careful consideration of the data error structure, to provide a 3D distribution of complex electrical conductivity values. The inverted distribution was further simplified using k -means cluster analysis to divide the inverted volume into discrete zones with horizontal layering. Identified layers based on complex electrical conductivity inversions are in broad agreement with stratigraphic units identified in previous studies at the site. Although mostly subtle variations in the phase angle are recovered through inversion of field data, greater contrasts in the IP data are evident at some unit boundaries. However, in coarse-grained aquifers, such as the BHRS, the discrimination of mildly contrasting lithologic units and associated changes in hydraulic conductivity of one or two orders of magnitude are unlikely to be achieved through field IP surveys. Despite the difficulty of differentiating subtle differences between all units, overall estimates of hydraulic conductivity purely from our field IP data are typically within an order of magnitude of independently measured values.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-23
    Description: We used a recent ground-penetrating radar (GPR) methodology, early-time amplitude analysis, with the goal of monitoring changes in soil water content (SWC) in response to irrigation in clayey soils. We hypothesized that early-time analysis could be used to monitor changes in SWC in clay-rich soil where ground wave and reflection-based GPR methods traditionally fail. An overnight irrigation experiment was performed in a 20- by 14-m section of natural grassland at the Samford Ecological Research Facility in southeastern Queensland, Australia. Both GPR reflection surveys and ground wave velocity analysis were ineffective at the site due to the signal attenuation associated with the clay-rich soil. We collected daily GPR and time-domain reflectometry (TDR) data sets during a 5-d period in August 2014, with soil samples collected for gravimetric analysis at the conclusion of data collection. The GPR data display a clear response of the early-time signal amplitude to changes in SWC. The GPR data sets exhibit a strong correlation with SWC, as measured by TDR and gravimetric analysis of soil cores, which is consistent with the dependence of GPR early-time amplitude on relative permittivity. The results suggest that the early-time method can be used to obtain spatially distributed information on subsurface moisture content in clay-rich soils.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-06
    Description: Current estimates of carbon (C) storage in peatland systems worldwide indicate tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness and C content. Indonesian peatlands are considered the largest pool of tropical peat carbon (C), accounting for an estimated 65% of all tropical peat while being the largest source of carbon dioxide emissions from degrading peat worldwide, posing a major concern regarding long-term sources of greenhouse gases to the atmosphere. We combined a set of indirect geophysical methods (ground penetrating radar, GPR, and electrical resistivity imaging, ERI) with direct observations from core samples (including C analysis) to better understand peatland thickness in West Kalimantan (Indonesia) and determine how geophysical imaging may enhance traditional coring methods for estimating C storage in peatland systems. Peatland thicknesses estimated from GPR and ERI and confirmed by coring indicated variation by less than 3% even for small peat-mineral soil interface gradients (i.e. below 0.02°). The geophysical data also provide information on peat matrix attributes such as thickness of organomineral horizons between peat and underlying substrate, the presence of wood layers, buttressed trees and soil type. These attributes could further constrain quantification of C content and aid responsible peatland management in Indonesia.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...