ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
  • 1975-1979  (2)
  • 1
    Publication Date: 2015-11-20
    Description: Rainwater harvesting (RWH), the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional RWH systems have fallen into disrepair due to increasing dependence on groundwater. This dependence has contributed to an accelerated decline in groundwater resources, which has in turn led to increased efforts at the state and national levels to revive older RWH systems. Critical to the success of such efforts is an improved understanding of how these ancient systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these RWH "tanks" at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale water-level variation to quantify daily fluxes of groundwater, evapotranspiration (ET), and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28 km2. At the tank scale, our results indicate that groundwater recharge and irrigation outflows comprise the largest fractions of the tank water budget, with ET accounting for only 13–22 % of the outflows. At the scale of the cascade, we observe a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflows increasing down the cascade of tanks. The significant magnitude of return flows along the tank cascade leads to the most downgradient tank in the cascade having an outflow-to capacity ratio greater than 2. The presence of tanks in the landscape dramatically alters the catchment water balance, with runoff decreasing by nearly 75 %, and recharge increasing by more than 40 %. Finally, while water from the tanks directly satisfies ~40 % of the crop water requirement across the northeast monsoon season via surface water irrigation, a large fraction of the tank water is "wasted," and more efficient management of sluice outflows could lead to tanks meeting a higher fraction of crop water requirements.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-07
    Description: Rainwater harvesting (RWH), the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional RWH systems have fallen into disrepair due to increasing dependence on groundwater. This dependence has contributed to accelerated decline in groundwater resources, which has in turn led to increased efforts at the state and national levels to revive older RWH systems. Critical to the success of such efforts is an improved understanding of how these ancient systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these RWH tanks at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale, water-level variation to quantify daily fluxes of groundwater, evapotranspiration (ET), and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28 km2. At the tank scale, our results indicate that groundwater recharge and irrigation outflows comprise the largest fractions of the tank water budget, with ET accounting for only 13–22 % of the outflows. At the scale of the cascade, we observe a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflows increasing down the cascade of tanks. The significant magnitude of return flows along the tank cascade leads to the most downgradient tank in the cascade having an outflow-to-capacity ratio greater than 2. At the catchment scale, the presence of tanks in the landscape dramatically alters the catchment water balance, with runoff decreasing by nearly 75 %, and recharge increasing by more than 40 %. Finally, while water from the tanks directly satisfies  ∼ 40 % of the crop water requirement across the northeast monsoon season via surface water irrigation, a large fraction of the tank water is "wasted", and more efficient management of sluice outflows could lead to tanks meeting a higher fraction of crop water requirements.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Heat transfer in agitated vessels with single-phase liquids. This article deals with the heat transfer in agitated vessels with single-phase Newtonian and non-Newtonian liquids. The following topics are discussed: influence of the hydrodynamics on the heat transfer behaviour; description of the heat transfer with the aid of dimensional analysis; heat transfer correlations for agitated liquids; efficiency of the usual impellers with regard to the heat transfer; and scale-up of agitated systems in the case of heat removal or heat supply. The various correlations suited for the prediction of the rate of heat transfer in both jacketed vessels and vessels with heating or cooling coils are tabulated for agitation produced by turbines (flat blades, disk flat blades, and pitched blades), propeller, anchors, paddles, and helical ribbons. These tables are available from the “Lehrstuhl für Thermische Verfahrenstechnik, Universität Dortmund, Postfach 500 500, D-4600 Dortmund”.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0009-286X
    Keywords: Wärmeübergang ; Gas/Flüssigkeits-Systeme ; begaste Flüssigkeit ; Begasung ; Gas/Flüssigkeits-Reaktor ; Blasensäule ; Rührbehälter ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...