ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A survey of theoretical and experimental research on the origin and characteristics of low-frequency hydromagnetic (HM) waves in the magnetosphere is presented, with a focus on advances in theory made in the last ten years. Basic wave theory and a collisionless plasma theory are applied to the magnetosphere as a HM system. Continuous energy sources are considered, such as the Kelvin-Helmholtz instability, the ring-current plasma, and drift instabilities. Other topics discussed include the theory of inhomogeneous HM waves, signal behavior in atmosphere and ionosphere, Alfven waves and ionosphere-magnetosphere coupling, Pi2 signals, damping, pulsating aurora, heavy-ion scattering, and standing waves in high-speed flows (like the wake phenomena caused on Jupiter by the passing of Io, observed by Voyager 1).
    Keywords: GEOPHYSICS
    Type: Space Science Reviews (ISSN 0038-6308); 35; Aug. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Direct measurements of the spatial extent of the resonant hydromagnetic waves associated with Pc 4 and 5 magnetic pulsations made by the closely spaced ISEE 1 and 2 satellites are presented together with ISEE 1 determinations of the harmonic of the resonant waves. The use of two satellites in similar orbits, which makes it possible to distinguish between spatial and temporal features, has shown the resonant region widths to extend over about 0.2 to 1.6 L shells for three events detected on the dayside between L = 4 and L = 7. The two events for which plasma density data was available occurred at plasma density gradients in the vicinity of the plasmapause. The standing wave harmonic was determined by the combination of two techniques: the comparison of the observed wave period with that predicted by standing wave theory, and the comparison of the phases of the observed wave electric and magnetic field. The two events analyzed are found to be second harmonic oscillations, suggesting internal generation in the magnetosphere by a bounce resonant mechanism.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research; 87; May 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: System albedo, an important climatological and environmental parameter, is considered. Some of the problems and assumptions involved in evaluating albedo from satellite data are discussed. Clear-sky and cloud albedos over the United Kingdom and parts of northwest Europe are treated. Consideration is given to the spectral, temporal, and spatial variations and the effect of averaging. The implications of these results for those using and archiving albedo values and for future monitoring of system albedo are discussed. Normalization is of especial importance since this correction alters many albedo values. The pronounced difference in spectral albedo of the two visible channels reemphasizes the problem of attempting to calculate integrated albedo values from meteorological satellite data. The assumption of isotropic reflection is seen to be invalid, hindering the computation of accurate albedo values.
    Keywords: GEOPHYSICS
    Type: International Journal of Remote Sensing; 3; Jan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The ISEE 1 and 2 spacecraft studied whether observed amplitude variations in hydromagnetic waves were due to the motion of the spacecraft through a time stationary structure or were due to temporal changes. The data provide evidence for spatially limited standing hydromagnetic wave resonant regions. The standing wave harmonic and Poynting vector were deduced from the simultaneous observations of the wave magnetic and electric field.
    Keywords: GEOPHYSICS
    Type: ESA Achievements of the Intern. Magnetospheric Study (IMS); p 619-623
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: After describing the development status of the field of magnetic pulsations in 1975, before the initiation of the International Magnetospheric Study (IMS), attention is given to the IMS's novel observational results and an attempt is made to identify the most effective research methods employed. It is found that the most fruitful work involved small-scale collaboration between a few individuals or a few groups possessing complementary data sets. Consideration is restricted to research on the long period pulsations which can be broadly classified as field line resonances. Recommendations are made for future research efforts.
    Keywords: GEOPHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A description is provided of observations made by GEOS 1, ISEE 1, and ISEE 2 of a hydromagnetic wave with a period approximately 90 s observed near 0200 LT between L = 9 and L = 6, close to the measured inner boundary of the plasma sheet. The wave magnetic oscillations perpendicular to and along the ambient field had similar amplitudes. Using primarily the transverse magnetic components, it is shown that the wave is a second harmonic resonance of the local geomagnetic field lines. ISEE 1 and 2 observed the opposite sense of polarization for about 30 min, although the spacecraft were separated by only 9 min in their orbit; this remarkable feature cannot be explained by either a stationary spatial boundary or a simple temporal boundary but could result from a rapid movement of the resonant region. It is argued that the most likely energy source is bounce resonance with medium energy (approximately 5 keV) ions. Calculations of the wave Poynting vector at ISEE 1 support this conclusion.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 89; 2755-276
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-20
    Description: Distributed Spacecraft Missions (DSMs) are gaining momentum in their application to Earth Observation (EO) missions owing to their unique ability to increase observation sampling in spatial, spectral, angular and temporal dimensions simultaneously. DSM design includes a much larger number of variables than its monolithic counterpart, therefore, Model-Based Systems Engineering (MBSE) has been often used for preliminary mission concept designs, to understand the trade-offs and interdependencies among the variables. MBSE models are complex because the various objectives a DSM is expected to achieve are almost always conflicting, non-linear and rarely analytical. NASA Goddard Space Flight Center (GSFC) is developing a pre-Phase A tool called Tradespace Analysis Tool for Constellations (TAT-C) to initiate constellation mission design. The tool will allow users to explore the tradespace between various performance, cost and risk metrics (as a function of their science mission) and select Pareto optimal architectures that meet their requirements. This paper will describe the different types of constellations that TAT-Cs Tradespace Search Iterator is capable of enumerating (homogeneous Walker, heterogeneous Walker, precessing type, ad-hoc) and their impact on key performance metrics such as revisit statistics, time to global access and coverage. We will also discuss the ability to simulate phased deployment of the given constellations, as a function of launch availabilities and/or vehicle capability, and show the impact on performance. All performance metrics are calculated by the Data Reduction and Metric Computation module within TAT-C, which issues specific requests and processes results from the Orbit and Coverage module. Our TSI is also capable of generating tradespaces for downlinking imaging data from the constellation, based on permutations of available ground station networks - known (default) or customized (by the user). We will show the impact of changing ground station options for any given constellation, on data latency and required communication bandwidth, which in turn determines the responsiveness of the space system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN65923 , International Astronautical Congress (IAC); Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-21355 , International Planetary Probe Workshop (IPPW-12); Jun 15, 2015 - Jun 19, 2015; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to 15m-class system. Two complications in working with handmade textiles structures are the non-linearity of the materials and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the materials out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m class HIAD. In this paper, the challenges and associated mitigation plans related to scaling up the HIAD stacked-torus aeroshell to a 15m class system will be discussed. In addition, the benefits of enlarging the structure will be further explored.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN29077 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6 meters, with cone angles of 60 and 70 degrees. To meet NASA and commercial near-term objectives, the HIAD team must scale the current technology up to 12-15 meters in diameter. Therefore, the HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6-meter to a 15-meter class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15-meter-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6-meter aeroshell (the largest HIAD built to date), a 12-meter aeroshell has four times the cross-sectional area, and a 15-meter one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15-meter HIAD. In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current manufacturing and testing that addressing these challenges.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN30768 , International Planetary Probe Workshop (IPPW 2016); Jun 13, 2016 - Jun 17, 2016; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...