ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-18
    Electronic ISSN: 2053-2733
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-08
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.6b04144
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-03
    Description: Precursors to the core phase PKP are generated by scattering of seismic energy from heterogeneities in the mantle. Here, we examine a large global dataset of PKP precursors in individual seismograms and array data, to better understand scattering locations. The precursor amplitudes from individual seismograms are analysed with respect to the inner core phase PKIKP and mantle phase PP. We find and correct for a hemispherical asymmetry in the precursor/PKIKP amplitudes, resulting from inner corestructure. Using ray tracing, we locate scatterers in our array data and use these to infer scattering locations in the individual data. The scattering strength displays regional variation, however we find no relationship with long scale CMB velocity structure. Scattering is observed in all regions of data coverage, as are paths with no precursors. This indicates scattering occurs from various small scale heterogeneities, including but not limited to ULVZs or partial melt, and slabs.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-06
    Description: The seismic structure of Earth's inner core is highly complex, displaying strong anisotropy and further regional variations. However, few seismic waves are sensitive to the inner core and fundamental questions regarding the origin of the observed seismic features remain unanswered. Thus, new techniques to observe different types of inner core waves are imperative to improve data coverage. Here, we detail our method for detecting exotic inner core phases such as PKJKP and PKIIKP, using inner core compressional waves as proof of concept. We use phase weighted stacking on long period data from a global distribution of stations, and employ several synthetic methods, including normal mode summation and SPECFEM, to identify and confirm the inner core phases. We present evidence for two observations of exotic inner core compressional waves, and apply the technique to a previously detected inner core shear wave. A possible new inner core shear wave remains unconfirmed. Additionally, we show how our method is important for rejecting potential observations, and distinguishing between waves with similar traveltime and slowness. The method is most successful for detecting exotic inner core compressional waves, and will provide a new approach for studying the compressional wave structures in the upper inner core.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-16
    Description: The structure of the Earth's inner core is not well known between depths of ~100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at epicentral distances between roughly 143 and 148°. Consequently, interpretation of the detailed structure of deeper regions also remains difficult. To overcome these issues we stack seismograms in slowness and time, separating the PKP and PKIKP phases which arrive simultaneously but with different slowness. We apply this method to study the inner core's Western hemisphere beneath South and Central America using paths travelling in the quasi-polar direction between 140 and 150° epicentral distance, which enables us to measure PKiKP–PKIKP differential traveltimes up to greater epicentral distance than has previously been done. The resulting PKiKP–PKIKP differential traveltime residuals increase with epicentral distance, which indicates a marked increase in seismic velocity for polar paths at depths greater than 100 km compared to reference model AK135. Assuming a homogeneous outer core, these findings can be explained by either (i) inner core heterogeneity due to an increase in isotropic velocity or (ii) increase in anisotropy over the studied depth range. Although this study only samples a small region of the inner core and the current data cannot distinguish between the two alternatives, we prefer the latter interpretation in the light of previous work.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-29
    Description: The mantle transition zone is delineated by seismic discontinuities around 410 and 660 km, which are generally related to mineral phase transitions. Study of the topography of the discontinuities further constrains which phase transitions play a role and, combined with their Clapeyron slopes, what temperature variations occur. Here we use P-to-s converted seismic waves or receiver functions to study the topography of the mantle seismic discontinuities beneath Europe and the effect of subducting and ponding slabs beneath southern Europe on these features. We combine roughly 28,000 of the highest quality receiver functions into a common conversion point stack. In the topography of the discontinuity around 660 km, we find broadscale depressions of 30 km beneath central Europe and around the Mediterranean. These depressions do not correlate with any topography on the discontinuity around 410 km. Explaining these strong depressions by purely thermal effects on the dissociation of ringwoodite to bridgmanite and periclase requires unrealistically large temperature reductions. Presence of several wt % water in ringwoodite leads to a deeper phase transition, but complementary observations, such as elevated Vp/Vs ratio, attenuation and electrical conductivity, are not observed beneath central Europe. Our preferred hypothesis is the dissociation of ringwoodite into akimotoite and periclase in cold downwelling slabs at the bottom of the transition zone. The strongly negative Clapeyron slope predicted for the subsequent transition of akimotoite to bridgmanite explains the depression with a temperature reduction of 200-300 K and provides a mechanism to pond slabs in the first place.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The mantle transition zone is the region between the globally observed major seismic velocity discontinuities around depths of 410 and 660 km and is important for determining the style of convection and mixing between the upper and the lower mantle. In this study, P-to-S converted waves, or receiver functions, are used to study these discontinuities beneath the Alaskan subduction zone, where the Pacific plate subducts underneath the North American plate. Previous tomographic models do not agree on the depth extent of the subducting slab, therefore improved imaging of the Earth structure underneath Alaska is required. We use 27,800 high quality radial receiver functions to make common conversion point stacks. Upper mantle velocity anomalies are accounted for by two recently published regional tomographic S-wave velocity models. Using these two tomographic models, we show that the discontinuity depths within our CCP stacks are highly dependent on the choice of velocity model, between which velocity anomaly magnitudes vary greatly. We design a quantitative test to show whether the anomalies in the velocity models are too strong or too weak, leading to over- or under-corrected discontinuity depths. We also show how this test can be used to rescale the 3D velocity corrections in order to improve the discontinuity topography maps. After applying the appropriate corrections, we find a localised thicker mantle transition zone and an uplifted 410 discontinuity, which show that the slab has clearly penetrated into the mantle transition zone. Little topography is seen on the 660 discontinuity, indicating that the slab has probably not reached the lower mantle. In the southwest, P410s arrivals have very small amplitudes or no significant arrival at all. This could be caused by water or basalt in the subducting slab, reducing the strength at the 410, or by topography on the 410 discontinuity, preventing coherent stacking. In the southeast of Alaska, a thinner mantle transition zone is observed. This area corresponds to the location of a slab window, and thinning of the mantle transition zone may be caused by hot mantle upwellings.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called ‘full mode coupling’ allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1–2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems that great care must be taken in any attempt to robustly infer details of Earth's density structure using current splitting functions.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-18
    Description: We present the new model SP12RTS of isotropic shear-wave ( V S ) and compressional-wave ( V P ) velocity variations in the Earth's mantle. SP12RTS is derived using the same methods as employed in the construction of the shear-wave velocity models S20RTS and S40RTS, and the same data types. SP12RTS includes additional traveltime measurements of P -waves and new splitting measurements: 33 normal modes with sensitivity to the compressional-wave velocity and 9 Stoneley modes with sensitivity primarily to the lowermost mantle. Contrary to S20RTS and S40RTS, variations in V S and V P are determined without invoking scaling relationships. Lateral velocity variations in SP12RTS are parametrised using spherical harmonics up to degree 12, to focus on long-wavelength features of V S and V P and their ratio R . Large-low-velocity provinces (LLVPs) are observed for both V S and V P . SP12RTS also features an increase of R up to 2500 km depth, followed by a decrease towards the core–mantle boundary. A negative correlation between the shear-wave and bulk-sound velocity variations is observed for both the LLVPs and the surrounding mantle. These characteristics can be explained by the presence of post-perovskite or large-scale chemical heterogeneity in the lower mantle.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-06
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.5b03693
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...