ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fairall, C. W. W., Yang, M., Brumer, S. E. E., Blomquist, B. W. W., Edson, J. B. B., Zappa, C. J. J., Bariteau, L., Pezoa, S., Bell, T. G. G., & Saltzman, E. S. S. Air-Sea trace gas fluxes: direct and indirect measurements. Frontiers in Marine Science, 9, (2022): 826606, https://doi.org/10.3389/fmars.2022.826606.
    Description: The past decade has seen significant technological advance in the observation of trace gas fluxes over the open ocean, most notably CO2, but also an impressive list of other gases. Here we will emphasize flux observations from the air-side of the interface including both turbulent covariance (direct) and surface-layer similarity-based (indirect) bulk transfer velocity methods. Most applications of direct covariance observations have been from ships but recently work has intensified on buoy-based implementation. The principal use of direct methods is to quantify empirical coefficients in bulk estimates of the gas transfer velocity. Advances in direct measurements and some recent field programs that capture a considerable range of conditions with wind speeds exceeding 20 ms-1 are discussed. We use coincident direct flux measurements of CO2 and dimethylsulfide (DMS) to infer the scaling of interfacial viscous and bubble-mediated (whitecap driven) gas transfer mechanisms. This analysis suggests modest chemical enhancement of CO2 flux at low wind speed. We include some updates to the theoretical structure of bulk parameterizations (including chemical enhancement) as framed in the COAREG gas transfer algorithm.
    Description: This work, and the contributions of MY and TB, is supported by the UK Natural Environment Research Council’s ORCHESTRA (Grant No. NE/N018095/1) and PICCOLO (Grant No. NE/P021409/1) projects, and by the European Space Agency’s AMT4OceanSatFlux project (Grant No. 4000125730/18/NL/FF/gp). CF and BB are funded by the National Oceanic and Atmospheric Administration’s Global Ocean Monitoring and Observing program (http://data.crossref.org/fundingdata/funder/10.13039/100018302). CZ was funded by the National Science Foundation (CJZ: OCE-2049579, Grants OCE-1537890 and OCE-1923935). Funding for HiWinGS was provided by the US National Science Foundation grant AGS-1036062. The Knorr-11 and SOAP campaigns were supported by the NSF Atmospheric Chemistry Program (Grant No. ATM-0426314, AGS-08568, -0851472, -0851407 and -1143709).
    Keywords: Gas transfer velocity ; Chemical enhancement ; Bubble mediated transfer ; COARE gas flux parameterization ; Dimethylsufide (DMS) ; Cardon dioxide (CO2) ; Bulk algorithm ; Direct observation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Shipping is the cornerstone of international trade and thus a critical economic sector. However, ships predominantly use fossil fuels for propulsion and electricity generation, which emit greenhouse gases such as carbon dioxide and methane, and air pollutants such as particulate matter, sulfur oxides, nitrogen oxides, and volatile organic compounds. The availability of Automatic Information System (AIS) data has helped to improve the emission inventories of air pollutants from ship stacks. Recent laboratory, shipborne, satellite and modeling studies provided convincing evidence that ship-emitted air pollutants have significant impacts on atmospheric chemistry, clouds, and ocean biogeochemistry. The need to improve air quality to protect human health and to mitigate climate change has driven a series of regulations at international, national, and local levels, leading to rapid energy and technology transitions. This resulted in major changes in air emissions from shipping with implications on their environmental impacts, but observational studies remain limited. Growth in shipping in polar areas is expected to have distinct impacts on these pristine and sensitive environments. The transition to more sustainable shipping is also expected to cause further changes in fuels and technologies, and thus in air emissions. However, major uncertainties remain on how future shipping emissions may affect atmospheric composition, clouds, climate, and ocean biogeochemistry, under the rapidly changing policy (e.g., targeting decarbonization), socioeconomic, and climate contexts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The air-sea gas transfer velocity (K-660) is typically assessed as a function of the 10-m neutral wind speed (U-10n), but there remains substantial uncertainty in this relationship. Here K-660 of CO2 derived with the eddy covariance (EC) technique from eight datasets (11 research cruises) are reevaluated with consistent consideration of solubility and Schmidt number and inclusion of the ocean cool skin effect. K-660 shows an approximately linear dependence with the friction velocity (u*) in moderate winds, with an overall relative standard deviation (relative standard error) of about 20% (7%). The largest relative uncertainty in K-660 occurs at low wind speeds, while the largest absolute uncertainty in K-660 occurs at high wind speeds. There is an apparent regional variation in the steepness of the K-660-u* relationships: North Atlantic 〉= Southern Ocean 〉 other regions (Arctic, Tropics). Accounting for sea state helps to collapse some of this regional variability in K-660 using the wave Reynolds number in very large seas and the mean squared slope of the waves in small to moderate seas. The grand average of EC-derived K-660 ( - 1.47 + 76.67 u * + 20.48 u *(2) o r 0.36 + 1.203 U-10n + 0.167 U (2)(10n) ) is similar at moderate to high winds to widely used dual tracer-based K-660 parametrization, but consistently exceeds the dual tracer estimate in low winds, possibly in part due to the chemical enhancement in air-sea CO2 exchange. Combining the grand average of EC-derived K-660 with the global distribution of wind speed yields a global average transfer velocity that is comparable with the global radiocarbon (C-14) disequilibrium, but is similar to 20% higher than what is implied by dual tracer parametrizations. This analysis suggests that CO2 fluxes computed using a U-10n (2) dependence with zero intercept (e.g., dual tracer) are likely underestimated at relatively low wind speeds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...