ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
Collection
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: Explaining the dynamics of gas-saturated live petroleum in deep water remains a challenge. Recently, Pesch et al. (Environ. Eng. Sci. 2018, 35, 289−299) reported laboratory experiments on methane-saturated oil droplets under emulated deep-water conditions, providing an opportunity to elucidate the underlying dynamical processes. We explain these observations with the Texas A&M Oil spill/Outfall Calculator (TAMOC), which models the pressure-, temperature-, and composition-dependent interactions between: oil-gas phase transfer; aqueous dissolution; and densities and volumes of liquid oil droplets, gas bubbles, and two-phase droplet-bubble pairs. TAMOC reveals that aqueous dissolution removed 〉95% of the methane from ~3.5-mm live oil droplets within 14.5 min, prior to gas bubble formation, during the experiments of Pesch et al. Additional simulations indicate that aqueous dissolution, fluid density changes, and gas-oil phase transitions (ebullition, condensation) may all contribute to the fates of live oil and gas in deep water, depending on the release conditions. Illustrative model scenarios suggest that 5-mm diameter gas bubbles released at 〈470 m water depth can transport methane, ethane, and propane to the water surface. Ethane and propane can reach the water surface from much deeper releases of 5-mm diameter live oil droplets, during which ebullition occurs at water depths of 〈70 m.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...