ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (18)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: The boreoatlantic gonate squid (Gonatus fabricii) represents important prey for top predators—such as marine mammals, seabirds and fish—and is also an efficient predator of crustaceans and fish. Gonatus fabricii is the most abundant cephalopod in the northern Atlantic and Arctic Ocean but the trace element accumulation of this ecologically important species is unknown. In this study, trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) were analysed from the mantle muscle and the digestive gland tissue of juveniles, adult females, and adult males that were captured south of Disko Island off West-Greenland. To assess the feeding habitat and trophic position of this species, stable isotopes of carbon (δ13C) and nitrogen (δ15N) were measured in their muscle tissue. Mercury concentrations were positively correlated with size (mantle length) and trophic position. The Hg/Se ratio was assessed because Se has been suggested to play a protective role against Hg toxicity and showed a molar surplus of Se relative to Hg. Cadmium concentrations in the digestive gland were negatively correlated with size and trophic position (δ15N), which suggested a dietary shift from Cd-rich crustaceans towards Cd-poor fish during ontogeny. This study provides trace element concentration data for G. fabricii from Greenlandic waters, which represents baseline data for a northern cephalopod species. Within West-Greenland waters, G. fabricii appears to be an important vector for the transfer of Cd in the Arctic pelagic food web.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights: • The pace of life of life of vampire squid and Japetella were examined. • Japetella diaphana and Vampyroteuthis infernalis have contrasting reproductive strategies. • Brooding in Japetella is estimated to last for two years in water temperature ~4 °C. • Feeding ecology and metabolic rates suggest non-daily deposition of beak growth increments. • Both species’ life-history traits suggest a slow pace of life and longer lifespans.The pelagic cephalopods Japetella diaphana and Vampyroteuthis infernalis are charismatic and widely distributed members of deep pelagic ecosystems. Their habitat temperatures, metabolic rates, feeding and reproductive strategies all together suggest that the pace of life in these species is reduced when compared to neritic octopod species, but information on longevity, growth rates and age estimations are absent to date. To estimate the pace of life in pelagic octopods, this study investigated size at maturity, reproductive strategy, and the number of growth-increments in the upper beak lateral walls (LWS) of J. diaphana (an octopod) and V. infernalis (a vampyromorph). Daily deposition of growth increments in hard body structures (e.g., beaks and stylets) has been validated experimentally in some temperate and tropical octopods, but remains unquantified and not yet validated for most deep-sea and high-latitude cephalopods. We used a diverse assemblage of specimens ranging from early juveniles to adults for both species. Mature J. diaphana had a mantle length (ML) of 53–144 mm and a body mass (BM) of 18–235 g. A brooding female of J. diaphana captured at 1352 m in the Gulf of California was carrying 1419 eggs in pre-organogenetic stage that measured ~2.5 mm in diameter. The size range of mature V. infernalis was ML 66–122 mm and BM 34–286 g. The number of growth increments in the beaks ranged from 21 to 207 in J. diaphana and from 89 to 375 in V. infernalis. If the growth increments are formed daily, like in tropical octopod species, age estimates are incongruent with the low metabolic rates and reproductive strategies of the two species. These observations suggest that growth increments may require more than one day to be formed. To better understand the life histories of invertebrates in the largest but least studied habitat on the planet, age and growth validation studies are critical.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Observations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50-1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusa Aglantha digitale and appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores, Beroe spp., Euplokamis sp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Squid play a major role in the Southern Ocean food web. However, their age and growth remain poorly studied. Here, using upper and lower beaks of Moroteuthopsis longimana collected from the diet of Dissostichus mawsoni from Pacific and Atlantic sectors of the Southern Ocean, we studied: (1) Feasibility of using beaks collected from predators’ stomachs to study the age of Southern Ocean oceanic squid; and (2) Age estimation and growth patterns of M. longimana. The rostrum sagittal section (RSS) of both beaks had micro-increments, with the lower beak being the best to observe and count a readable sequence of increments to estimate the age. Assuming a daily deposition of increments, our results suggest that M. longimana can live up to 820 days and may hatch throughout the year. Studied individuals presented a consistent growth rate from hatching to death but with, at least, one period of faster growth. A novel pattern of regular cycles, composed of 7–10 lighter increments followed by a darker one, was found in the medium-anterior region of the RSS. Differences were found in the growth rate and size reached at the same age between individuals from the Pacific and Atlantic sectors, which might be related with different environmental conditions between both capture sites. This study shows that lower beaks from predators’ stomachs can be used to study the age of Southern Ocean squids and that M. longimana hatches in all seasons, being available year round to predators that feed of this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Highlights: • Stable isotope values vary among species with Adelieledone polymorpha, having highest values. • Variations in trace element concentrations suggest different feeding ecology. • Antarctic incirrate octopods are likely vectors of As, Cd and Hg to their predators. • Sex influences Cd, Co, Cu, Fe, Pb and Zn concentrations. Despite the Antarctic Ocean being considered a pristine environment, elevated trace element concentrations have been reported in many marine organisms. The Antarctic Ocean is particularly vulnerable to climate change, which can also affect the bioaccumulation of trace element concentrations in biota. While Antarctic octopods are key components of the regional food webs as prey for a variety of predators (e.g., seals, fish, and seabirds), their contamination state by trace elements remains largely unknown. This study investigated the trace element concentrations in relation to the trophic ecology in Antarctic octopods. Stable isotope values (δ13C and δ15N) and trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn) were measured in eight different species (Adelieledone polymorpha, Pareledone aequipapillae, P. albimaculata, P. aurata, P. charcoti, P. cornuta, P. felix, and P. turqueti) sampled near Elephant Island, close to the Antarctic Peninsula. Stable isotopes of δ15N varied among species, with significant differences between A. polymorpha and P. aurata suggesting potential niche segregation. Trace element concentrations also differed among species and with sampling depth, which likely reflects their trophic ecology. The data presented in this study provides the first insight into the trace element concentrations for these endemic octopods in this vulnerable habitat and their stable isotope values
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The study of marine food web models has increased during the last years, but input data of important groups such as cephalopods are missing sometimes which restricts the quality of the model results. Cephalopods feed on a variety of preys, ranging from small crustaceans to large commercially important fish species. In turn, they are taken by larger invertebrates, fish, cephalopods, marine mammals and seabirds, which emphasizes their important role in various marine food webs. Our study presents stomach content analyses of various cephalopod species from the North Sea and describes their general feeding trends. The results further support the inclusion of cephalopods as predators into food web models to increase our knowledge of the North Sea ecosystem and to improve its management. Our data in combination with observed increasing biomasses of North Sea cephalopods suggest that the impact of cephalopods in the North Sea food web has increased and that large-sized cephalopods have become more important as predators for commercially exploited fish species during recent years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Highlights: • Sightings of non-native of range expanding marine species in the SW Baltic Sea • Novel approach for classification of hydrographic conditions in the SW Baltic Sea • Linking sightings of species to hydrographic environmental anomalies Abstract: The Baltic Sea, located in northern Europe, is one of the largest brackish water bodies in the world. Salinity levels range from fresh water conditions in the northeast to full strength saline waters at its transition zone to the North Sea in the west. Most of the water exchange happens in the SW Baltic Sea, the Belt Sea, where fresh water exits the Baltic Sea at the surface, while high saline, oxygen rich water is entering the Baltic at depth. Due to the extended salinity gradient of the Baltic Sea, a variety of species occur at the limit of their physiological tolerance and preference, i.e. in areas and habitats not representing their marine or fresh water origin. Additionally, the Baltic Sea is known for its high share of non-indigenous species, which have established. In this study, we compiled extraordinary sightings of transient, non-native or potentially range expanding species in the SW Baltic Sea for a period from 2001 to 2018. We focused on jellyfish, squid, fishes and marine mammals and linked their occurrences to the local hydrography. Hydrographic conditions, such as water temperature and salinity, were obtained from a high spatio-temporally resolved hydrodynamic Baltic Sea model, covering a daily resolved 40-year time series. We investigated that changes in the occurrence of exceptional species reflect the dynamics of water mass exchange between the Kattegat/Skagerrak and the SW Baltic Sea. Our analyses show that these changes could be related to the presence of anomalously high saline water masses. However, only a minor part of the sightings was caused by major Baltic inflow events, which are important to sustain oxygen rich deep water in the central Baltic Sea. This documents that the hydrographically highly dynamic SW Baltic Sea needs special attention for monitoring of non-indigenous species, as (i) high saline and warm water intrusions are more frequent than currently believed and ii) can be linked to sightings of exceptional species in the SW Baltic Sea. Additionally, most of the recent sightings occurred during anomalously warm periods. This supports the hypothesis, that the Baltic Sea is presently a predominant receiver area for non-indigenous species from warmer regions of the world.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Global studies imply that cephalopods have benefited from climate change. However, in most areas, species-specific long-term cephalopod data sets do not exist to support this implication and to analyse the response of cephalopods to environmental changes. Our results illustrate that historical studies, in combination with recent data sets, can fill this gap, enabling descriptions of ecological changes over a long time. We show substantial changes in the cephalopod biodiversity of the North Sea at species level over the past 100 years. Some species, which seemed to migrate into the North Sea only for spawning or foraging in the nineteenth century, occur permanently in the North Sea nowadays. This applies, for example, to the loliginids Loligo forbesii and Alloteuthis subulata. The ommastrephids Todaropsis eblanae and Illex coindetii, now constantly present as well, had been described only as accidental migrants 100 years ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The deep sea is among the largest, most biologically diverse, yet least-explored ecosystems on Earth. Baseline information on deep-sea biodiversity is crucial for understanding ecosystem functioning and for detecting community changes. Here, we established a baseline of cephalopod community composition and distribution off Cabo Verde, an archipelago in the eastern tropical Atlantic. This baseline served to test the hypothesis that Cabo Verde is biogeographically separated from other Macaronesian archipelagos and allowed the identification of cephalopod species which may play a role in the Macaronesian carbon cycle and oceanic food web. To investigate cephalopod community composition, this study used 746 individual cephalopods obtained by nets (0–1000 m) and 52 cephalopod encounters during video surveys with either towed camera (0–2500 m) or manned submersible (0–375 m). Additionally, environmental DNA (eDNA) metabarcoding on 105 seawater samples (50–2500 m), using an 18S rRNA universal cephalopod primer pair, and a species-specific primer pair for Taningia danae resulted in the detection of 32 cephalopod taxa. When combined, the three methods detected a total of 87 taxa, including 47 distinct species. Each method contributed between 7 and 54% of taxa that were not detected by the other methods, indicating that multiple methodological approaches are needed for optimal deep-sea cephalopod biodiversity assessments. This study documents the occurrences of six species and three genera for the first time in waters surrounding Cabo Verde. Video surveys and eDNA analysis detected Taningia danae recurrently (100–2500 m). eDNA metabarcoding proved to be a powerful tool for cephalopod biodiversity monitoring and complementary to traditional sampling methods. When also including literature records, Cabo Verde hosts at least 102 cephalopod taxa including 30 families and 64 benthic and pelagic species. The total number and species composition of Cabo Verde cephalopods is similar to the Canary Islands and Azores, two known cephalopod biodiversity hotspots, but the Cabo Verde octopus fauna seems to differ. Due to a range of life history characteristics, we hypothesize that the squids Taningia danae (Octopoteuthidae) and Sthenoteuthis pteropus (Ommastrephidae) are important in the carbon cycle of Macaronesia. As a cephalopod biodiversity hotspot Cabo Verde could function as a model region to investigate cephalopod biology and ecology in a rapidly changing Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: In the deep sea, benthic communities largely depend on organic material from the overlying water column for food. The remains of organisms on the seafloor (food falls) create areas of organic enrichment that attract scavengers. The scavenging rates and communities of food falls of medium-sized squid, fish and jellyfish (1-100 cm) are poorly known. To test our hypothesis that scavenging responses are specific for different food falls, we deployed camera landers baited with squid, jellyfish and fish for 9 to 25 h at 1360 to 1440 m in the southern Norwegian Sea. Image analysis of 8 deployments showed rapid food fall consumption (20.3 +/- 1.4 [SD] to 31.6 +/- 3.7 g h(-1)) by an amphipod-dominated scavenging community that was significantly different between the food fall types. Fish and squid carcasses were mostly attended by amphipods of the genus Eurythenes. Smaller unidentified amphipods dominated the jellyfish experiments together with brittle stars (cf. Ophiocten gracilis) and decapod shrimps (cf. Bythocaris spp.); the latter only occurred on jellyfish carcasses. The removal time for jellyfish (similar to 17 h) was almost twice as long as that for squid and fish (9-10 h). The maximum scavenger abundance was significantly higher on fish carcasses than on jellyfish and squid. The times at which abundances peaked were similar for jellyfish and fish (after 8-9 h) but significantly sooner for squid (3.00 +/- 0.35 h). Our results, although based on a small number of experiments, demonstrate differences in scavenging responses between food fall species, suggesting tight coupling between the diversity and ecology of benthic scavenging communities in the Norwegian Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...