ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
Collection
Language
Years
Year
  • 1
    Publication Date: 2020-12-21
    Description: Three holes were drilled to the bed of Rutford Ice Stream, through ice up to 2154 m thick, to investigate the basal processes and conditions associated with fast ice flow and the glacial history of the West Antarctic Ice Sheet. A narrative of the drilling, measuring and sampling activities, as well as some preliminary results and initial interpretations of subglacial conditions, is given. These were the deepest subglacial access holes ever drilled using the hot-water drilling method. Samples of bed and englacial sediments were recovered, and a number of instruments were installed in the ice column and the bed. The ice–bed interface was found to be unfrozen, with an existing, well-developed subglacial hydrological system at high pressure, within ~1% of the ice overburden. The bed itself comprises soft, water-saturated sediments, consistent with previous geophysical interpretations. Englacial sediment quantity varies significantly between two locations ~2 km apart, and possibly over even shorter (~20 m) distances. Difficulties and unusual observations encountered while connecting to the subglacial hydrological system in one hole possibly resulted from the presence of a large clast embedded in the bottom of the ice.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-03
    Description: We report on observations from instruments deployed on a pair of moorings sited ~5 km apart, beneath Ronne Ice Shelf, Antarctica. Measurements of temperature, salinity and current velocities for the period from early 2015 to mid-2019 demonstrate strong variability at timescales from tidal to interannual. Here we focus on features that are a few days in length that we interpret as vortices streaming past the site. The intensity of the vortices is enhanced towards the ice-shelf base; they are in geostrophic equilibrium, have a radius (12 km), substantially larger than the estimated internal radius of deformation (~1500 m) and have a relative vorticity that is 30 to 40% of the local planetary vorticity. The velocity of the features, determined by correlating observations from instruments on the two moorings, is the same as that of the ambient water flow. The time series of basal melt rates, measured using a collocated downward-looking radar, shows the melt rate signal to be dominated by an approximate spring-neap variability, but with a significant response to the eddying flow. Although tidal activity clearly affects basal melt rates, as illustrated by the strong ~14-day variation, the net effect of the vortices is less obvious. Here we argue that the cyclonic and anticyclonic vortices ventilate the thermocline via Ekman pumping, thus increasing melting. Such eddy features are clearly a significant component of sub-ice shelf ocean variability, at least in the study area.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-09-12
    Description: Antarctic glaciers are losing ice rapidly to the ocean through basal melting of ice shelves/tongues. To better predicate future sea level rise, it is urgent to detect the rapid basal melting of ice shelves/tongues as well as ocean’s role in this process. In this study, basal melting of Drygalski Ice Tongue (DIT), the seaward extension of David Glacier in Northern Victoria Land, East Antarctica has been detected using a surface deployed Autonomous Phase-sensitive Radio-Echo-Sounder (ApRES). The ocean water changes adjacent to DIT front has been revealed using an ocean mooring. ApRES observation suggests a rapid basal melting 〉 10 m/a close to DIT front in February and mooring data shows a synchronous ocean warming in austral summer, indicating Antarctica Surface Water intrusion to the base of DIT. The mooring data has been used to simulate the basal melting of DIT front, which coincides with ApRES measurements. We conclude that rapid basal melting close to the tongue front was likely triggered by intrusion of Antarctica Surface Water in austral summer. Glacier-ocean interactions, such as glacier basal melting, can be detected from spaceborne, terrestrial and oceanic observations and are important processes to predict future sea level changes. To better understand the driving forces of glacier changes, multi-disciplinary observation and numerical modeling are required.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...