ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (38)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2023-12-14
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The collection of zooplankton swimmers and sinkers in time‐series sediment traps provides unique insight into year‐round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice‐covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long‐Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time‐series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea‐ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea‐ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Federal Ministry of Education and Research (BMBF)
    Description: Helmholtz‐Gemeinschaft
    Keywords: ddc:577.7 ; eastern Fram Strait ; sea ice dynamics ; zooplankton population dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The Arctic Ocean is considerably affected by the consequences of global warming, including more extreme seasonal fluctuations in the physical environment. So far, little is known about seasonality in Arctic marine ecosystems in particular microbial dynamics and cycling of organic matter. The limited characterization can be partially attributed to logistic difficulties of sampling in the Arctic Ocean beyond the summer season. Here, we investigated the distribution and composition of dissolved organic matter (DOM), gel particles and heterotrophic bacterial activity in the Fram Strait during summer and autumn. Our results revealed that phytoplankton biomass influenced the concentration and composition of semi-labile dissolved organic carbon (DOC), which strongly decreased from summer to autumn. The seasonal decrease in bioavailability of DOM appeared to be the dominant control on bacterial abundance and activity, while no temperature effect was determined. Additionally, there were clear differences in transparent exopolymer particles (TEP) and Coomassie Blue stainable particles (CSP) dynamics. The amount of TEP and CSP decreased from summer to autumn, but CSP was relatively enriched in both seasons. Our study therewith indicates clear seasonal differences in the microbial cycling of organic matter in the Fram Strait. Our data may help to establish baseline knowledge about seasonal changes in microbial ecosystem dynamics to better assess the impact of environmental change in the warming Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Amino acids (AA) and carbohydrates (CHO) are important components of the marine organic carbon cycle. Produced mainly by phytoplankton as part of the particulate organic carbon (POC) fraction, these compounds can be released into the outer medium where they become part of the dissolved organic carbon (DOC) pool and are rapidly taken up by heterotrophs (e.g., bacteria). We investigated the quantity and quality of POC and DOC, AA and CHO composition in both pools in three different water masses in the Fram Strait (Arctic Ocean) in summer 2017. Polar Waters and Atlantic Waters showed similar concentrations of particulate and dissolved AA and CHO, despite Polar Waters showing the highest DOC concentrations. In Mixed Waters, where the two water masses mix with each other and with melting sea ice, the concentrations of particulate and dissolved AA and CHO were highest. AA and CHO composition differed substantially between the particulate and dissolved fractions. The particulate fraction (〉0.7 μm) was enriched in essential AA and the CHO galactose, xylose/mannose, and muramic acid. In the dissolved fraction non-essential AA, several neutral CHO, and acidic and amino CHO were enriched. We further investigated different size fractions of the particulate matter using a separate size fractionation approach (0.2–0.7 μm, 0.7–10 μm and 〉10 μm). The chemical composition of the 0.2–0.7 μm size-fraction had a higher contribution of non-essential AA and acidic and amino sugars, setting them apart from the 0.7–10 μm and 〉10 μm fractions, which showed the same composition. We suggest that the relative differences observed between different size fractions and DOC with regards to AA and CHO composition can be used to evaluate the state of organic matter processing and evaluate the contribution of autotrophic phytoplankton or more heterotrophic biomass. In the future, changing conditions in the Central Arctic Ocean (Atlantification, warming, decreasing ice concentrations) may increase primary production and consequently degradation. The AA and CHO signatures left behind after production and/or degradation processes occurred, could be used as tracers after the fact to infer changes in microbial loop processes and food web interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The Arctic Ocean is subject to severe environmental changes, including the massive decline in sea ice due to continuous warming in many regions. Along with these changes, the Arctic Ocean’s ecosystem is affected on various scales. The pelagic microbial food web of the Arctic is of particular interest, because it determines mass transfer to higher trophic levels. In this regard, variations in the size structure of the microbial community reflect changes in size-dependent bottom-up and top-down processes. Here we present analyses of microscopic data that resolve details on composition and cell size of unicellular plankton, based on samples collected between 2016 and 2018 in the Fram Strait. Using the Kernel Density Estimation method, we derived continuous size spectra (from 1 μm to ≈ 200 μm Equivalent Spherical Diameter, ESD) of cell abundance and biovolume. Specific size intervals (3–4, 8–10, 25–40, and 70–100μm ESD) indicate size-selective predation as well as omnivory. In-between size ranges include loopholes with elevated cell abundance. By considering remote sensing data we could discriminate between polar Arctic- and Atlantic water within the Fram Strait and could relate our size spectra to the seasonal change in chlorophyll-a concentration. Our size spectra disclose the decline in total biovolume from summer to autumn. In October the phytoplankton biovolume size-spectra reveal a clear relative shift towards larger cell sizes (〉 30 μm). Our analysis highlights details in size spectra that may help refining allometric relationships and predator-prey dependencies for size-based plankton ecosystem model applications.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The collection of zooplankton swimmers and sinkers in time-series sediment traps provides unique insight into year-round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice-covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long-Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time-series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea-ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea-ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Critical questions exist regarding the abundance and, especially, the export of picophytoplankton (≤2 µm diameter) in the Arctic. These organisms can dominate chlorophyll concentrations in Arctic regions, which are subject to rapid change. The picoeukaryotic prasinophyte Micromonas grows in polar environments and appears to constitute a large, but variable, proportion of the phytoplankton in these waters. Here, we analyze 81 samples from the upper 100 m of the water column from the Fram Strait collected over multiple years (2009–2015). We also analyze sediment trap samples to examine picophytoplankton contributions to export, using both 18S rRNA gene qPCR and V1-V2 16S rRNA Illumina amplicon sequencing to assess the Micromonas abundance within the broader diversity of photosynthetic eukaryotes based on the phylogenetic placement of plastid-derived 16S amplicons. The material sequenced from the sediment traps in July and September 2010 showed that 11.2 ± 12.4% of plastid-derived amplicons are from picoplanktonic prasinophyte algae and other green lineage (Viridiplantae) members. In the traps, Micromonas dominated (83.6% ± 21.3%) in terms of the overall relative abundance of Viridiplantae amplicons, specifically the species Micromonas polaris. Temporal variations in Micromonas abundances quantified by qPCR were also observed, with higher abundances in the late-July traps and deeper traps. In the photic zone samples, four prasinophyte classes were detected in the amplicon data, with Micromonas again being the dominant prasinophyte, based on the relative abundance (89.4% ± 8.0%), but with two species (M. polaris and M. commoda-like) present. The quantitative PCR assessments showed that the photic zone samples with higher Micromonas abundances (〉1000 gene copies per mL) had significantly lower standing stocks of phosphate and nitrate, and a shallower average depth (20 m) than those with fewer Micromonas. This study shows that despite their size, prasinophyte picophytoplankton are exported to the deep sea, and that Micromonas is particularly important within this size fraction in Arctic marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Seasonal variations in day length and temperature, in combination with dynamic factors such as advection from the North Atlantic, influence primary production and the microbial loop in the Fram Strait. Here, we investigated the seasonal variability of biopolymers, microbial abundance, and microbial composition within the upper 100 m during summer and fall. Flow cytometry revealed a shift in the autotrophic community from picoeukaryotes dominating in summer to a 34-fold increase of Synechococcus by fall. Furthermore, a significant decline in biopolymers concentrations covaried with increasing microbial diversity based on 16S rRNA gene sequencing along with a community shift towards fewer polymer-degrading genera in fall. The seasonal succession in the biopolymer pool and microbes indicates distinct metabolic regimes, with a higher relative abundance of polysaccharide-degrading genera in summer and a higher relative abundance of common taxa in fall. The parallel analysis of DOM and microbial diversity provides an important baseline for microbe-substrate relationships over the seasonal cycle in the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The Arctic Ocean is highly susceptible to climate change as evidenced by rapid warming and the drastic loss of sea ice during summer. The consequences of these environmental changes for the microbial cycling of organic matter are largely unexplored. Here, we investigated the distribution and composition of dissolved organic matter (DOM) along with heterotrophic bacterial activity in seawater and sea ice of the Eurasian Basin at the time of the record ice minimum in 2012. Bacteria in seawater were highly responsive to fresh organic matter and remineralized on average 55% of primary production in the upper mixed layer. Correlation analysis showed that the accumulation of dissolved combined carbohydrates (DCCHO) and dissolved amino acids (DAA), two major components of fresh organic matter, was related to the drawdown of nitrate. Nitrate‐depleted surface waters at stations adjacent to the Laptev Sea showed about 25% higher concentrations of DAA than stations adjacent to the Barents Sea and in the central Arctic basin. Carbohydrate concentration was the best predictor of heterotrophic bacterial activity in sea ice. In contrast, variability in sea‐ice bacterial biomass was largely driven by differences in ice thickness. This decoupling of bacterial biomass and activity may mitigate the negative effects of biomass loss due to ice melting on heterotrophic bacterial functions. Overall, our results reveal that changes in DOM production and inventories induced by sea‐ice loss have a high potential to enhance the bacterial remineralization of organic matter in seawater and sea ice of the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: During most of the year, diatom production in the ice-covered Central Arctic Ocean (CAO) is limited by light availability and nutrient supply. Therefore, biological production is thought to be generally low, with higher biological production at the sea ice edge and over partially ice-free shelf areas. The major surface ocean current in the CAO is the Transpolar Drift (TPD), which transports sea ice and water from the rivers and shelves of the Laptev and the East Siberian Seas across the CAO toward the Fram Strait, carrying high amounts of terrestrial-derived material over long distances. We used Si isotopes (δ30Si) to better understand the difference between lower and higher biological production areas and how the TPD potentially affects the Si cycle in the CAO. Our data show low dissolved Si concentrations ([DSi]) paired with high values of δ30Si-DSi in all surface samples indicating fractionation by diatoms. Specifically, outside the TPD influence, all nutrients were depleted and supply was limited due to stratified conditions, thus preventing further phytoplankton growth in the area during the sampling time in late summer-early fall. In contrast, under the TPD influence, diatom primary production was limited by low nitrate and strongly limited by light due to the presence of sea ice, even though [DSi] values were much higher than outside the TPD. Based on δ30Si, we could identify low but measurable DSi utilization in the TPD, potentially highlighting the importance of sea ice-attached diatoms transported to the CAO via the TPD for the Si cycle in this region. Key Points - Primary production and silicon utilization outside the Transpolar Drift are higher than under its influence due to more light availability - Primary production and lateral water transport under the Transpolar Drift influence were identified from silicon isotope composition - The Transpolar Drift delivers high dissolved silicon to the surface Arctic Ocean, a unique feature not seen in any other open ocean
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Submesoscale eddies and fronts are important components of oceanic mixing and energy fluxes. These phenomena occur in the surface ocean for a period of several days, on scales between a few hundred meters and few tens of kilometers. Remote sensing and modeling suggest that eddies and fronts may influence marine ecosystem dynamics, but their limited temporal and spatial scales make them challenging for observation and in situ sampling. Here, the study of a submesoscale filament in summerly Arctic waters (depth 0–400 m) revealed enhanced mixing of Polar and Atlantic water masses, resulting in a ca. 4 km wide and ca. 50 km long filament with distinct physical and biogeochemical characteristics. Compared to the surrounding waters, the filament was characterized by a distinct phytoplankton bloom, associated with depleted inorganic nutrients, elevated chlorophyll a concentrations, as well as twofold higher phyto- and bacterioplankton cell abundances. High-throughput 16S rRNA gene sequencing of bacterioplankton communities revealed enrichment of typical phytoplankton bloom-associated taxonomic groups (e.g., Flavobacteriales) inside the filament. Furthermore, linked to the strong water subduction, the vertical export of organic matter to 400 m depth inside the filament was twofold higher compared to the surrounding waters. Altogether, our results show that physical submesoscale mixing can shape distinct biogeochemical conditions and microbial communities within a few kilometers of the ocean. Hence, the role of submesoscale features in polar waters for surface ocean biodiversity and biogeochemical processes need further investigation, especially with regard to the fate of sea ice in the warming Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...