ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Highlights: • Copepods more efficiently assimilated methylmercury than inorganic mercury. • Algal size can consequentially influence uptake for different mercury species. • The fraction of methylmercury transferred to zooplankton varies with algae species. • Uptake of mercury species into algae is active. • Demonstrated the usefulness of stable isotopes approaches. Mercury (Hg) and methylmercury (CH3Hg) are found at trace levels in most marine waters. These species, particularly CH3Hg, then ominously bioaccumulate through marine food chains eventually reaching potentially harmful levels in top oceanic wildlife. Accordingly, it is important to measure and evaluate uptake at environmentally relevant concentrations where trophic transfer initiates; during uptake in primary producers, and consumption by plankton grazers. Experiments using cultured copepods (Acartia tonsa) and field zooplankton assemblages were performed with two different sized diatom species labeled with stable isotopes of inorganic Hg (Hg-200) and CH3Hg ((CH3Hg)-Hg-199) at different concentrations. We observed size-specific effects on algal uptake and transfer to copepods, in addition to effects of Hg species concentration. Prey size effects were likewise observed on copepod assimilation efficiencies (AE). Average AE of Hg-200 for copepods feeding on smaller diatoms was 50%, and 39% for larger diatoms. The AEs were much greater for (CH3Hg)-Hg-199, yielding 71% for the smaller and 88% for the larger diatoms. These experiments add evidence demonstrating a significant relationship between Hg and CH3Hg exposure concentration and subsequent algal uptake and transfer to zooplankton. Furthermore, results imply that facilitated uptake of CH3Hg into algae occurs at low (similar to pM) concentrations, which has been suggested but not confirmed in previous research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-05
    Description: Highlights • Mercury methylation in sediment rapidly transported into water and diatoms. • CH3Hg flux was highest for sediments with higher sulfide and organic content. • Mineral and compressed sediment released minor Hg and CH3Hg. • Higher sediment Hg species flux does not correlate with high sediment content. • Stable isotope incubations provide substantial insight to environmental Hg cycling. Abstract Mercury (Hg) is a conspicuous and persistent global pollutant. Ionic Hg can be methylated into noxious methylmercury (CH3Hg), which biomagnifies in marine tropic webs and poses a health risk to humans and organisms. Sediment Hg methylation rates are variable, and the output flux of created CH3Hg are dependent on sediment characteristics and environmental factors. Thus, uncertainties remain about the formation and flux of CH3Hg from sediment, and how this could contribute to the bioaccumulative burden for coastal organisms in shallow ecosystems. Cores were collected from 3 estuarine locations along the Eastern USA to examine how sediments characteristics influence the introduction of Hg and CH3Hg into the base of the food chain. Stable isotopes of inorganic 200Hg and CH3199Hg were injected into sediments of individual cores, with cultured diatoms constrained to overlying waters. Five different treatments were done on duplicate cores, spiked with: (1) no Hg isotopes (control); (2) inorganic 200Hg; (3) CH3199Hg; (4) both 200Hg and CH3199Hg isotopes, (5) both 200Hg and CH3199Hg into overlying waters (not sediment). Experimental cores were incubated for 3 days under temperature and light controlled conditions. These results demonstrate that upper sediments characteristics lead to high variability in Hg cycling. Notably, sediments which contained abundant and peaty organic material (∼28 %LOI), had the highest pore water DOC (3206 μM) and displayed bands of sulfur reducing bacteria yielded the greatest methylation rate (1.97 % day−1) and subsequent diatom uptake of CH3200Hg (cell quota 0.18 amol/cell) in the overlying water.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...