ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (5)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: We report on the geochemistry of hydrocarbons and pore waters down to 62.5 mbsf, collected by drilling with the MARUM‐MeBo70 and by gravity coring at the Lunde pockmark in the Vestnesa Ridge. Our data document the origin and transformations of volatiles feeding gas emissions previously documented in this region. Gas hydrates are present where a fracture network beneath the pockmark focusses migration of thermogenic hydrocarbons characterized by their C1/C2+ and stable isotopic compositions (δ2H‐CH4, δ13C‐CH4). Measured geothermal gradients (~80°C km‐1) and known formation temperatures (〉70°C) suggest that those hydrocarbons are formed at depths 〉800 mbsf. A combined analytical/modeling approach, including concentration and isotopic mass balances, reveals that pockmark sediments experience diffuse migration of thermogenic hydrocarbons. However, at sites without channeled flow this appears to be limited to depths 〉 ~50 mbsf. At all sites we document a contribution of microbial methanogenesis to the overall carbon cycle that includes a component of secondary carbonate reduction (CR) – i.e. reduction of dissolved inorganic carbon (DIC) generated by anaerobic oxidation of methane (AOM) in the uppermost methanogenic zone. AOM and CR rates are spatially variable within the pockmark and are highest at high‐flux sites. These reactions are revealed by δ13C‐DIC depletions at the sulfate‐methane interface at all sites. However, δ13C‐CH4 depletions are only observed at the low methane flux sites because changes in the isotopic composition of the overall methane pool are masked at high‐flux sites. 13C‐depletions of TOC suggest that at seeps sites, methane‐derived carbon is incorporated into de novo synthesized biomass.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights • A saline formation fluid originated from great depths was documented. • Gas hydrates are currently at a dynamic equilibrium due to the low methane flux. • Fluids were diverted by the buried seep carbonates in Lunde pockmark. Abstract Seafloor seepage sites along the Vestnesa Ridge off west-Svalbard have been, for decades, a natural laboratory for the studies of fluid flow and gas hydrate dynamics at passive continental margins. The lack of ground truth evidence for fluid composition and gas hydrate abundance deep in the sediment sequence however prohibits us from further assessing the current model of pockmark evolution from the region. A MARUM-MeBo 70 drilling cruise in 2016 aims to advance our understanding of the system by recovering sediments tens of meters below seafloor from two active pockmarks along Vestnesa Ridge. We report pore fluid composition data focusing on dissolved chloride, stable isotopes of water (δ18O and δD), and the isotopic composition of dissolved boron (δ11B). We detect a saline formation water around two layers where gas hydrates were recovered from one of the seepage sites. This saline formation pore fluid is characterized by elevated chloride concentrations (up to 616 mM), high B/Cl ratios (9×10-4 mol/mol), high δ18O and δD isotopic signatures (+0.6 ‰ and +3.8 ‰, respectively) and low δ11B signatures (+35.0 ‰), which collectively hint to a high temperature modification at great depths. Based on the dissolved chloride concentration profiles, we estimated up to 47 % of pore space occupied by gas hydrate in the sediments shallower than 11.5 mbsf. The observation of bubble fabric in the recovered gas hydrates suggests formation during past periods of intensive gaseous methane seepage. The presence of these gas hydrates without associated positive anomalies in dissolved chloride concentrations however suggests that the decomposition of gas hydrate is as fast as its formation. Such a state of gas hydrates can be attributed to a relatively low methane supply transported by the saline formation water at present. Our findings based on pore fluid composition corroborate previous inferences along Vestnesa Ridge that fluids sustaining seepage have migrated from great depths and that the variable gaseous and aqueous phases through the gas hydrate stability zone controls the distributions of authigenic carbonates and gas hydrates.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-01
    Print ISSN: 0025-326X
    Electronic ISSN: 1879-3363
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-30
    Description: The microbial key players at methane seeps are methanotrophic archaea and sulfate-reducing bacteria. They form spherical aggregates and jointly mediate the sulfate-dependent anaerobic oxidation of methane (SD–AOM: CH4 + SO42– → HCO3– + HS– + H2O), thereby inducing the precipitation of authigenic seep carbonates. While seep carbonates constitute valuable archives for molecular fossils of SD–AOM-mediating microbes, no microfossils have been identified as AOM aggregates to date. We report clustered spherical microstructures engulfed in 13C-depleted aragonite cement (δ13C values as low as –33‰) of Pleistocene seep carbonates. The clusters comprise Mg-calcite spheres between ~5 μm (single spheres) and ~30 μm (clusters) in diameter. Scanning and transmission electron microscopy revealed a porous nanocrystalline fabric in the core area of the spheres surrounded by one or two concentric layers of Mg-calcite crystals. In situ measured sphere δ13C values as low as –42‰ indicate that methane-derived carbon is the dominant carbon source. The size and concentric layering of the spheres resembles mineralized aggregates of natural anaerobic methanotrophic archaea (ANME) of the ANME-2 group surrounded by one or two layers of sulfate-reducing bacteria. Abundant carbonate-bound 13C-depleted lipid biomarkers of archaea and bacteria indicative of the ANME-2-Desulfosarcina/Desulfococcus consortium agree with SD–AOM-mediating microbes as critical agents of carbonate precipitation. Given the morphological resemblance, in concert with negative in situ δ13C values and abundant SD–AOM-diagnostic biomarkers, the clustered spheres likely represent fossils of SD–AOM-mediating microbes.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-08-11
    Description: Reliable deep-time environmental and climate reconstructions are needed to understand the drivers of Earth's system evolution over geological time. Palaeozoic temperature estimates, including reconstructions of the climate change through the Ordovician, are based mainly on oxygen isotope (18O/16O; δ18OVSMOW) thermometry derived from carbonate rocks with fossils such as calcitic brachiopods and phosphatic conodonts that are often the best preserved repositories of environmental conditions. Palaeoenvironmental reconstructions are reliable only if the geochemical data is obtained using well-calibrated analytical tools. Most previous research devoted to oxygen isotope composition of conodonts has been conducted using the bulk method (gas source isotope ratio mass spectrometry (GS-IRMS)) that typically requires pooling several dozens of conodont elements for a single isotope ratio measurement. As such, studies of conodont-poor intervals and assessments of taxon-specific δ18O variability require extensive sample preparation and are challenging using the bulk method. Such challenges can be addressed by in situ secondary ion mass spectrometry (SIMS) analyses using only picogram sampling masses. However, several studies have reported inconsistencies between SIMS and GS-IRMS δ18O data for the same research material. We aim to solve this controversy by establishing a robust analytical protocol for conodont isotope analysis by SIMS. Here we present conodont data on Pterospathodus and Amorphognathus specimens extracted from Ordovician strata in Nurme and Mehikoorma-421 boreholes (Estonia). Oxygen isotope composition of conodonts was analysed by both SIMS and GS-IRMS, where we paid particular attention to four inorganic apatite reference materials in order to understand the offset between these two techniques that have been reported in the literature. While the results of GS-IRMS measurements conducted using high-temperature reduction of Ag3PO4 represent exclusively δ18O of phosphate-bound oxygen, SIMS analyses do not discriminate between different oxygen components (e.g., (PO4)3-, (SiO4)4-, (CO3)2-, and (OH)-) in apatite, inherently providing information on pooled isotope compositions. We conducted quantitative chemical analyses of selected conodont elements by electron probe microanalysis to assess to what extent matrix effects cause the offsets between the two isotope techniques. We also used scanning electron microscopy and white light optical profilometry to evaluate sample topography and porosity, which have a major impact on SIMS data quality. We collected oxygen isotope data using a CAMECA 1280-HR large geometry instrument at the Potsdam SIMS user facility over several months to determine reproducibility of the results and to optimise a routine measurement protocol. Our tests included a variety of instrumental settings, e.g., different raster parameters for both pre-sputtering and data collection, which yielded slightly differing results due to different instrumental mass fractionation. SIMS is a comparative method, and as such relies on reference materials that have been previously characterised by bulk methods, ideally provided by multiple laboratories. We noted that the inconsistent offsets between SIMS and GS-IRMS data obtained for a given conodont specimen (with SIMS δ18O values in most cases being higher) are linked to reference material measurements that are necessary for conodont data calibration and are often biased towards lighter δ18O values. Our tests show that such bias is even more significant when calibration is based on a single reference material characterised by a single GS-IRMS laboratory, which has been a common practice in past conodont studies.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...