ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2023-12-27
    Description: The EU Center of Excellence for Exascale in Solid Earth (ChEESE) develops exascale transition capabilities in the domain of Solid Earth, an area of geophysics rich in computational challenges embracing different approaches to exascale (capability, capacity, and urgent computing). The first implementation phase of the project (ChEESE-1P; 2018–2022) addressed scientific and technical computational challenges in seismology, tsunami science, volcanology, and magnetohydrodynamics, in order to understand the phenomena, anticipate the impact of natural disasters, and contribute to risk management. The project initiated the optimisation of 10 community flagship codes for the upcoming exascale systems and implemented 12 Pilot Demonstrators that combine the flagship codes with dedicated workflows in order to address the underlying capability and capacity computational challenges. Pilot Demonstrators reaching more mature Technology Readiness Levels (TRLs) were further enabled in operational service environments on critical aspects of geohazards such as long-term and short-term probabilistic hazard assessment, urgent computing, and early warning and probabilistic forecasting. Partnership and service co-design with members of the project Industry and User Board (IUB) leveraged the uptake of results across multiple research institutions, academia, industry, and public governance bodies (e.g. civil protection agencies). This article summarises the implementation strategy and the results from ChEESE-1P, outlining also the underpinning concepts and the roadmap for the on-going second project implementation phase (ChEESE-2P; 2023–2026).
    Description: EU
    Description: Published
    Description: 47-61
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: HPC ; Physical models ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-20
    Description: In seismically active regions with variable dominant focal mechanisms, there is considerable tsunami inundation height uncertainty. Basic earthquake source parameters such as dip, strike, and rake affect significantly the tsunamigenic potential and the tsunami directivity. Tsunami inundation is also sensitive to other properties such as bottom friction. Despite their importance, sensitivity to these basic parameters is surprisingly sparsely studied in literature. We perform suites of systematic parameter searches to investigate the sensitivity of inundation at the towns of Catania and Siracusa on Sicily to changes both in the earthquake source parameters and the Manning friction. The inundation is modelled using the Tsunami-HySEA shallow water code on a system of nested topo-bathymetric grids with a finest spatial resolution of 10 m. This GPU-based model, with significant HPC resources, allows us to perform large numbers of high- resolution tsunami simulations. We analyze the variability of different hydrodynamic parameters due to large earthquakes with uniform slip at different locations, focal depth, and different source parameters. We consider sources both near the coastline, in which significant near-shore co-seismic deformation occurs, and offshore, where near- shore co-seismic deformation is negligible. For distant offshore earthquake sources, we see systematic and intuitive changes in the inundation with changes in strike, dip, rake, and depth. For near-shore sources, the dependency is far more complicated and co- determined by both the source mechanisms and the coastal morphology. The sensitivity studies provide directions on how to resolve the source discretization to optimize the number of sources in Probabilistic Tsunami Hazard Analysis, and they demonstrate a need for a far finer discretization of local sources than for more distant sources. For a small number of earthquake sources, we study systematically the inundation as a function of the Manning coefficient. The sensitivity of the inundation to this parameter varies greatly for different earthquake sources and topo-bathymetry at the coastline of interest. The friction greatly affects the velocities and momentum flux and to a lesser but still significant extent the inundation distance from the coastline. An understanding of all these dependencies is needed to better quantify the hazard when source complexity increases.
    Description: Published
    Description: 757618
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 3IT. Calcolo scientifico
    Description: JCR Journal
    Keywords: tsunami ; inundation ; HPC ; earthquakes ; numerical simulations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-16
    Description: Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community development.
    Description: Published
    Description: DM215
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...