ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-20
    Description: Bathymetric data from oceanic transform faults and their associated fracture zones were compiled, providing high-resolution gridded seafloor topography. Data used in this compilation were open and archived at US American National Oceanographic and Atmospheric Administration (https://maps.ngdc.noaa.gov/viewers/bathymetry), Japan Agency for Marine-Earth Science and Technology (http://www.godac.jamstec.go.jp/darwin/e), and the German Datacenter for bathymetric data (https://www.bsh.de/EN/DATA/Oceanographic_Data_Center/Surveying_data/surveying_data_node). Data were processed and gridded using Multibeam System (https://www.mbari.org/products/research-software/mb-system) and can be displayed using Generic Mapping Tools (https://gmt.soest.hawaii.edu). All grids are in netCDF format. The compilation includes transform faults and fracture zones from the Northern and Southern East Pacific Rise, the Cosos-Nazca spreading center, Chile Rise and the Pacific Antarctic Ridge, the Southwest Indian Ridge, Central Indian Ridge and Southeast Indian Ridge as well as the Mid-Atlantic Ridge.
    Keywords: Area/locality; Binary Object; Binary Object (File Size); Binary Object (Media Type); CIR_Argo; CIR_FractureZone_MarieCelester; CIR_MarieCelester; CocosSpreadingRidge_Transform85W; CocosSpreadingRidge_Transform91W; CR_Transform39S; CR_Transform43S; EPR_Clipperton; EPR_Orozco; Event label; fracture zones; gridded bathymetry; Indian Ocean; Latitude of event; Longitude of event; MAR_Ascension; MAR_Atlantis; MAR_Cox; MAR_FractureZone_2345S; MAR_Hayes; MAR_Kane; MAR_Marathon; MAR_Oceanographer; MAR_Transform2220S; MAR_Transform2545S; Mid-Ocean Ridges; North Pacific Ocean; PAR_Pitman; SBM; SEIR_Transform100E; SEIR_Transform103E; SEIR_Transform78E; SEIR_Transform88E; SEIR_Vlamingh; SEIR_Zeewolf; SEPR_Garrett; SEPR_Gofar; SEPR_Quebrada_Discovery; South Atlantic Ocean; South Pacific Ocean; Swath bathymetry mapping; swath-mapping echosounding; SWIR_AndrewBain_NE; SWIR_AndrewBain_SW; SWIR_AtlantisII; SWIR_DuTroit; SWIR_FractureZone_5545E; SWIR_Marion; SWIR_Shaka; transform faults
    Type: Dataset
    Format: text/tab-separated-values, 108 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: High‐temperature hydrothermal venting has been discovered on all modern mid‐ocean ridges at all spreading rates. Although significant strides have been made in understanding the underlying processes that shape such systems, several first‐order discrepancies between model predictions and observations remain. One key paradox is that numerical experiments consistently show entrainment of cold ambient seawater in shallow high permeability ocean crust causing a temperature drop that is difficult to reconcile with high vent temperatures. We investigate this conundrum using a thermo‐hydro‐chemical model that couples hydrothermal fluid flow with anhydrite‐ and pyrite‐forming reactions in the shallow subseafloor. The models show that precipitation of anhydrite in warming seawater and in cooling hydrothermal fluids during mixing results in the formation of a chimney‐like subseafloor structure around the upwelling, high‐temperature plume. The establishment of such anhydrite‐sealed zones reduces mixing between the hydrothermal fluid and seawater and results in an increase in vent temperature. Pyrite subsequently precipitates close to the seafloor within the anhydrite chimney. Although anhydrite thus formed may be dissolved when colder seawater circulates through the crust away from the spreading axis, the inside pyrite walls would be preserved as veins in present‐day metal deposits, thereby preserving the history of hydrothermal circulation through shallow oceanic crust.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Oceanic transform faults are seismically and tectonically active plate boundaries1 that leave scars—known as fracture zones—on oceanic plates that can cross entire ocean basins2. Current descriptions of plate tectonics assume transform faults to be conservative two-dimensional strike–slip boundaries1,3, at which lithosphere is neither created nor destroyed and along which the lithosphere cools and deepens as a function of the age of the plate4. However, a recent compilation of high-resolution multibeam bathymetric data from 41 oceanic transform faults and their associated fracture zones that covers all possible spreading rates shows that this assumption is incorrect. Here we show that the seafloor along transform faults is systemically deeper (by up to 1.6 kilometres) than their associated fracture zones, in contrast to expectations based on plate-cooling arguments. Accretion at intersections between oceanic ridges and transform faults seems to be strongly asymmetric: the outside corners of the intersections show shallower relief and more extensive magmatism, whereas the inside corners have deep nodal basins and seem to be magmatically starved. Three-dimensional viscoplastic numerical models show that plastic-shear failure within the deformation zone around the transform fault results in the plate boundary experiencing increasingly oblique shear at increasing depths below the seafloor. This results in extension around the inside corner, which thins the crust and lithosphere at the transform fault and is linked to deepening of the seafloor along the transform fault. Bathymetric data suggest that the thinned transform-fault crust is augmented by a second stage of magmatism as the transform fault intersects the opposing ridge axis. This makes accretion at transform-fault systems a two-stage process, fundamentally different from accretion elsewhere along mid-ocean ridges.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...