ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (54)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2023-07-19
    Description: Limited constraints on the variability of the deep‐water production in the Labrador Sea complicate reconstructions of the strength of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Quaternary. Large volumes of detrital carbonates were repeatedly deposited in the Labrador Sea during the last 32 kyr, potentially affecting radiogenic Nd isotope signatures. To investigate this the Nd isotope compositions of deep and intermediate waters were extracted from the authigenic Fe‐Mn oxyhydroxide fraction, foraminiferal coatings, the residual silicates and leachates of dolostone grains. We provide a first order estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. During the Last Glacial Maximum the Nd isotope signatures in the Labrador Sea would allow active water mass mixing with more radiogenic ɛNd values (−12.6 and −14) prevailing in its eastern part whereas less radiogenic values (ɛNd ∼ −18.4) were found on the western Labrador slope. The deposition of detrital carbonates during Heinrich stadials (2,1) was accompanied by negative detrital and authigenic Nd isotope excursions (ɛNd ∼ −31) that were likely controlled by dissolution of dolostone or dolostone associated mineral inclusions. This highly unradiogenic signal dominated the authigenic phases and individual water masses in the Labrador Sea, serving as potential source of highly unradiogenic Nd to the North Atlantic region, while exported southward. The Holocene authigenic ɛNd signatures of the coatings and leachates significantly differed from those of the detrital silicates, approaching modern bottom water mass signatures during the Late Holocene.
    Description: Plain Language Summary: The Labrador Sea is an important region for deep water formation and for the ocean circulation in the Atlantic region. Over the last 32 thousand years, numerous discharges from melting glaciers added freshwater to the Labrador Sea which could help understand the future effects of current melting glaciers. This information is necessary to better constrain climate predictions in order to gauge the effects on the Global Ocean Water Circulation. However, past deep water production in the Labrador is still poorly constrained, complicating reconstruction of the Atlantic Meridional Overturning Circulation on different timescales. In this study we investigated changes in deep and intermediate water mass circulation patterns over the last 32 kyr based on the radiogenic Nd isotope compositions that serve as a water mass circulation proxy. Analysis of four marine sediment cores show that the deposition of large volumes of detrital carbonates during studied period had a large effect on the recorded in the sediment column signals. New data suggest active water mass circulation during the maximum extent of glacial ice sheets. The modern day ocean circulation patterns have emerged during the Late Holocene (6 ka).
    Description: Key Points: Estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. Dissolution of detrital dolostones in the water column during Heinrich stadials at least partially controlled ɛNd signatures. During the LGM generally more radiogenic signatures possibly indicate active water mass advection and mixing in the Labrador Sea.
    Description: GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel http://dx.doi.org/10.13039/501100003153
    Description: Kiel University
    Description: https://doi.org/10.1594/PANGAEA.952659
    Keywords: ddc:551.9 ; Labrador Sea ; Late Quaternary ; Paleoceanography ; neodymium isotopes ; dolostone ; AMOC ; carbonate dissolution ; Heinrich stadials
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Key Points Calibration of XRF core scanning data highlights the need for careful examination of sediment properties such as porosity/water Grain size and water content in the sediment trigger systematic artifacts in the signal intensity of light elements (e.g. Si and Al) Known terrigenous flux proxies (e.g Ti/Ca, Fe/Ca) are influenced by sea level variations X‐ray fluorescence (XRF) core scanning of marine and lake sediments has been extensively used to study changes in past environmental and climatic processes over a range of timescales. The interpretation of XRF‐derived element ratios in paleoclimatic and paleoceanographic studies primarily considers differences in the relative abundances of particular elements. Here we present new XRF core scanning data from two long sediment cores in the Andaman Sea in the northern Indian Ocean and show that sea level related processes influence terrigenous inputs based proxies such as Ti/Ca, Fe/Ca, and elemental concentrations of the transition metals (e.g. Mn). Zr/Rb ratios are mainly a function of changes in median grain size of lithogenic particles and often covary with changes in Ca concentrations that reflect changes in biogenic calcium carbonate production. This suggests that a common process (i.e. sea level) influences both records. The interpretation of lighter element data (e.g. Si and Al) based on low XRF counts is complicated as variations in mean grain size and water content result in systematic artifacts and signal intensities not related to the Al or Si content of the sediments. This highlights the need for calibration of XRF core scanning data based on discrete sample analyses and careful examination of sediment properties such as porosity/water content for reliably disentangling environmental signals from other physical properties. In the case of the Andaman Sea, reliable extraction of a monsoon signal will require accounting for the sea level influence on the XRF data.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Highlights • Improved understanding of the behaviour of instrumental mass fractionation (IMF). • The effect of matrix elements on IMF is largely associated with plasma conditions that can be quantified with the NAI. • Matrix effects can be systematically and significantly attenuated by tuning of instrumental operating parameters. • A matrix tolerance plasma state is defined for stable barium isotope analysis. • The suggested analytical protocol is expected to be applicable to other stable isotope measurements with MC-ICP-MS. Abstract Stable barium isotope measurements with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) remain an analytical challenge and can be considerably affected by the presence of matrix elements, even when applying double spiking. Therefore significant efforts were invested in previous studies to develop efficient barium purification methods. However, due to the high variability in matrix/barium ratios for diverse sample matrices, potential matrix effects can still not be excluded. While a lot of effort has been invested into improving the chemical separation protocols, the impact of plasma conditions on the accuracy and precision of stable isotope measurements has rarely been considered. Here we present a systematic investigation of the relationship between plasma conditions, instrumental mass fractionation (IMF) and impurity (i.e. matrix) concentrations. The Normalised Ar Index (NAI) and Matrix-Ar Index (MA) are used to quantify MC-ICP-MS plasma conditions and plasma mass loading, respectively. Our results show that the effect of matrix elements on IMF is largely linked to plasma conditions (i.e. NAI) and behaves as a linear function of mass loading (i.e. MA). Accordingly, the matrix effects can be significantly attenuated by increasing the NAI thereby minimising the risk of plasma “over-loading”. The improved understanding of the behaviour of the matrix-induced IMF allows us to define a matrix tolerance plasma state for barium isotope analysis. The accuracy of this recommended method is further assessed by analyses of two well-studied reference materials, the GEOTRACES seawater reference sample SAFe D2 and the carbonate reference material JCp-1. We expect that the analytical protocol described in this study is applicable not only to barium isotope analysis, but also to a wide range of other stable isotope measurements with MC-ICP-MS.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Highlights • First systematic dissolved neodymium isotope distributions in Angola and Cape Basins. • Deep water neodymium isotopes dominated by conservative mixing in study area. • Neodymium isotopes trace surface waters from Mozambique Channel in Angola Basin. • Cape Basin bottom water neodymium isotopes are unaffected by neodymium from sediments. • Glacial Cape Basin bottom waters may show effects of sedimentary neodymium inputs. Abstract In contrast to the vigorous deep ocean circulation system of the north- and southwestern Atlantic Ocean, no systematically sampled datasets of dissolved radiogenic neodymium (Nd) isotope signatures exist to trace water mass mixing and provenance for the more restricted and less well ventilated Angola Basin and the Cape Basin in the southeastern Atlantic Ocean, where important parts of the return flow of the Atlantic Meridional Overturning Circulation are generated. Here, to improve our understanding of water mass mixing and provenance, we present the first full water column Nd isotope (expressed as εNd values) and concentration data for a section across the western Angola Basin from 3° to 30° S along the Zero Meridian and along an E-W section across the northern Cape Basin at 30° S sampled during GEOTRACES cruise GA08. Compared with the southwestern Atlantic basin we find overall less radiogenic εNd signatures reaching −17.6 in the uppermost 200 m of the Angola and Cape basins. In the western Angola Basin these signatures are the consequence of the admixture of a coastal plume originating near 13° S and carrying an unradiogenic Nd signal that likely resulted from the dissolution of Fe-Mn coatings of particles formed in river estuaries or near the West African coast. The highly unradiogenic Nd isotope signatures in the upper water column of the northern Cape Basin, in contrast, originate from old Archean terrains of southern Africa and are introduced into the Mozambique Channel via rivers like the Limpopo and Zambezi. These signatures allow tracing the advection of shallow waters via the Agulhas and Benguela currents into the southeastern Atlantic Ocean. The Nd isotope compositions of the deep water masses in both basins primarily reflect conservative water mass mixing with the only exception being the central Angola Basin, where the signatures are significantly overprinted by terrestrial inputs. Bottom waters of the Cape Basin show excess Nd concentrations of up to 6 pmol/kg (20%), originating from resuspended bottom sediments and/or dissolution of dust, but without significantly changing the isotopic composition of the waters due to similar εNd values of particles and bottom waters ranging between −9.6 and −10.5. Given that bottom waters within the Cape Basin today are enriched in Nd, non-conservative Nd isotopic effects may have been resolvable under past glacial boundary conditions when bottom waters were more radiogenic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Enabled by the success in the determination of stable barium (Ba) isotopic compositions in seawater, Ba isotopes have been suggested as a novel tool to study physical and biogeochemical processes in the present and past ocean. However, a better understanding of the fractionation of Ba isotopes during particle-seawater interactions is a prerequisite for such applications. In this study, we use an extensive data set of concentrations and isotopic compositions of dissolved Ba (DBa and δ138BaDBa) and bulk particulate Ba (pBabulk and δ138BapBabulk) collected in the northern South China Sea (NSCS) to constrain Ba isotope fractionation in the upper ocean. Seawater and suspended particle samples for Ba isotope measurements were collected in January 2010 along a transect from the outer shelf to the lower slope. The water column profiles reaching depths of 1000 m are characterized by a general decrease of δ138BaDBa and an increase of DBa with depth. However, δ138BaDBa signatures are essentially constant at +0.6‰ in the upper 150 m of the entire study area. The corresponding δ138BapBabulk, which primarily represents the isotopic compositions of oceanic or excess particulate Ba (pBaxs), is consistently lower than δ138BaDBa but also constant at values of +0.1 to +0.2‰. This suggests that the same Ba isotope fractionation process prevails above 150 m on the NSCS outer shelf and slope resulting in a constant in situ fractionation factor of −0.5‰. This value is consistent with previously reported values of −0.4 to −0.5‰ in the upper 200 m of the open ocean and a lake. Moreover, we observe significant differences of pBaxs distributions from those of particulate calcium, particulate organic carbon and nitrogen, and biogenic silica indicating that passive adsorption onto particles rather than active biological utilization is most likely the primary process inducing Ba isotope fractionation in the upper NSCS. The constant δ138BapBabulk signatures suggest that particulate Ba isotopes integrate reliable information during transformation of DBa to pBaxs and are thus a more robust proxy for total particle fluxes than pBaxs concentrations, which show variable values potentially affected by other processes (e.g., particle sinking and/or zooplankton grazing) and thus reflects “snapshot” processes in the water column. We contend that biological productivity plays only a subordinate role in regulating the surface Ba isotopic composition of bulk suspended particles. The extent to which Ba isotopes may nevertheless be a reliable proxy for present and past export productivity requires further analyses of the δ138Ba signature of specific Ba carriers such as barite throughout the water column and in the sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The Asian summer monsoon affects the lives of billions of people. With the aim of identifying geochemical tracers for the monsoon-related freshwater input from the major rivers draining into the Bay of Bengal (BoB) and the Andaman Sea (AnS), we have analyzed the yttrium and rare earth element (YREE) concentration of surface seawater samples from various locations spanning the Andaman Islands in 2011 to 2013. In some locations, samples have been taken in March, July, and November 2011, thus spanning the seasonal cycle and including different monsoon phases. Generally, the YREE patterns are similar to those reported for offshore samples from the BoB and AnS in January 1997, with seawater-normalized patterns of most samples characterized by middle REE enrichments. An enhancement of these middle REE bulges accompanies large increases in dissolved REE concentrations from streams and sediment-rich areas such as mangrove environments. Conversely, some samples, in particular those taken 1–2 days after heavy rainfall in March 2011, show pronounced REE scavenging accompanied by the preferential removal of dissolved light REEs (LREEs) and by higher Y/Ho ratios. The Nd isotope signature of the remaining dissolved REE phase of these low YREE samples is more radiogenic than local rocks and sediments. The time series at a location away from local input sources show remarkably similar REE patterns and concentrations in March and July. Then in October–November, following the peak in monsoon-induced river discharge, the dissolved REE concentrations increase by almost a factor of two, whereas Nd isotopes become less radiogenic by 1.5 εNd units. These unradiogenic values are found at the same site in the winter dry season of the following year, demonstrating the decoupling of sea surface salinity (SSS) and Nd. The large sub-annual variability of YREE concentrations and Nd isotopes encountered was likely caused by the conversion of YREE from the dissolved (probably colloidal) pool to the labile particulate fraction. The comparison of unfiltered and filtered sample concentrations reveals the existence of a large labile particulate pool in the BoB and AnS that most likely originates from the massive river sediment fluxes and is instrumental in the seasonal changes observed.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-05-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-24
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Highlights • First dissolved Nd/Hf isotope and REE data from the Congo River Plume. • High REE and Hf fluxes from the Congo River to the southeast Atlantic. • Conservative river and surface seawater mixing of Nd/Hf isotopes and REEs/Hf at S 〉 23. • Congo River particles impact intermediate and deep water signals of NE Angola Basin. Abstract The Congo River is the second largest river by discharge in the world and a major source of element inputs into the South Atlantic Ocean. Yet, the element fluxes and transport mechanisms across and beyond its estuary and their impacts on the marine distribution and cycling of many major and trace elements are not well understood. We present the first combined dissolved neodymium (Nd) and hafnium (Hf) isotope and rare earth element (REE) concentration distributions following the Congo River plume along its flow path off the West African coast and along a connected offshore latitudinal section at 3°S. The Congo River freshwater itself is characterized by extraordinarily high Nd and Hf concentrations of up to 4000 pmol/kg and 54 pmol/kg, and by Nd (εNd) and Hf (εHf) isotope compositions that range between −15.6 and −16.4 and between 0.35 and −1.4, respectively. Our near- and offshore data indicate that at salinities above 23 conservative mixing of Congo-derived Nd and Hf concentrations and isotopic signatures with ambient surface seawater occurs for at least 1000 km to the northwest of the river mouth. This demonstrates a large spatial extent of the influence of the Congo plume on trace metal distributions in the eastern south Atlantic surface waters. A comparison between dissolved Nd and Hf fluxes from the Congo River and the shelf zone estimated based on radium isotope compositions indicate that release from Congo-derived particulate phases likely balances strong estuarine REE and Hf removal in the low salinity zone. The combined riverine and shelf zone flux for Nd is almost twice as high as that estimated for the Amazon River, despite that the Amazon discharge is about five times higher than that of the Congo River. Even the offshore Nd flux estimated for the 3 °S transect based on radium isotope compositions still corresponds to ∼40% of the Congo-shelf-zone flux and reaches 150 ± 50 Mg/year for Nd. Moreover, intermediate waters below the plume are strongly affected by exchange with particulate inputs from the Congo River given that Nd isotope signatures are inconsistent with values expected from large-scale water mass mixing and instead support unradiogenic Nd release either from sinking or deposited Congo-derived detrital material. Deep and bottom water isotopic signatures are also slightly affected by interaction with particles and benthic Nd release.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...