ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 1
    Publication Date: 2024-02-07
    Description: The Southern Ocean is a major sink of atmospheric CO2, but the nature and magnitude of its variability remains uncertain and debated. Estimates based on observations suggest substantial variability that is not reproduced by process-based ocean models, with increasingly divergent estimates over the past decade. We examine potential constraints on the nature and magnitude of climate-driven variability of the Southern Ocean CO2 sink from observation-based air-sea O-2 fluxes. On interannual time scales, the variability in the air-sea fluxes of CO2 and O-2 estimated from observations is consistent across the two species and positively correlated with the variability simulated by ocean models. Our analysis suggests that variations in ocean ventilation related to the Southern Annular Mode are responsible for this interannual variability. On decadal time scales, the existence of significant variability in the air-sea CO2 flux estimated from observations also tends to be supported by observation-based estimates of O-2 flux variability. However, the large decadal variability in air-sea CO2 flux is absent from ocean models. Our analysis suggests that issues in representing the balance between the thermal and non-thermal components of the CO2 sink and/or insufficient variability in mode water formation might contribute to the lack of decadal variability in the current generation of ocean models.This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-22
    Description: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is similar to 60% larger in models (-0.72 vs. -0.44 PgC year-1, 1998-2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year-1 in observational product and +0.54 PgCO2-e year-1 in model median) and CH4 (+0.21 PgCO2-e year-1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%-60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate. The coastal ocean regulates greenhouse gases. It acts as a sink of carbon dioxide (CO2) but also releases nitrous oxide (N2O) and methane (CH4) into the atmosphere. This synthesis contributes to the second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2) and provides a comprehensive view of the coastal air-sea fluxes of these three greenhouse gases at the global scale. We use a multi-faceted approach combining gap-filled observation-based products and ocean biogeochemical models. We show that the global coastal ocean is a net sink of CO2 in both observational products and models, but the coastal uptake of CO2 is similar to 60% larger in models than in observation-based products due to model-product differences in seasonality. The coastal CO2 sink is strengthening but the magnitude of this strengthening is poorly constrained. We also find that the coastal emissions of N2O and CH4 counteract a substantial part of the effect of coastal CO2 uptake in the atmospheric radiative balance (by 30%-60% in CO2-equivalents), highlighting the need to consider these three gases together to understand the influence of the coastal ocean on climate. We synthesize air-sea fluxes of CO2, nitrous oxide and methane in the global coastal ocean using observation-based products and ocean models The coastal ocean CO2 sink is 60% larger in ocean models than in observation-based products due to systematic differences in seasonality Coastal nitrous oxide and methane emissions offset 30%-60% of the CO2 coastal uptake in the net radiative balance
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    The Royal Society
    In:  EPIC3Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, The Royal Society, 381(2249), pp. 20220055-20220055, ISSN: 1364-503X
    Publication Date: 2023-07-17
    Description: The Southern Ocean is a major sink of atmospheric CO 2, but the nature and magnitude of its variability remains uncertain and debated. Estimates based on observations suggest substantial variability that is not reproduced by process-based ocean models, with increasingly divergent estimates over the past decade. We examine potential constraints on the nature and magnitude of climate-driven variability of the Southern Ocean CO 2 sink from observation-based air-sea O 2 fluxes. On interannual time scales, the variability in the air-sea fluxes of CO 2 and O 2 estimated from observations is consistent across the two species and positively correlated with the variability simulated by ocean models. Our analysis suggests that variations in ocean ventilation related to the Southern Annular Mode are responsible for this interannual variability. On decadal time scales, the existence of significant variability in the air-sea CO 2 flux estimated from observations also tends to be supported by observation-based estimates of O 2 flux variability. However, the large decadal variability in air-sea CO 2 flux is absent from ocean models. Our analysis suggests that issues in representing the balance between the thermal and non-thermal components of the CO 2 sink and/or insufficient variability in mode water formation might contribute to the lack of decadal variability in the current generation of ocean models. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Global Biogeochemical Cycles, American Geophysical Union (AGU), 38(1), ISSN: 0886-6236
    Publication Date: 2024-02-13
    Description: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year−1 in observational product and +0.54 PgCO2-e year−1 in model median) and CH4 (+0.21 PgCO2-e year−1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%–60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...