ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (5)
Collection
Language
Years
Year
  • 1
    Publication Date: 2023-06-26
    Description: Probabilistic Tsunami Hazard and Risk Analysis (PTHA/PTRA) has its roots in the corresponding probabilistic approaches in the seismic sciences. However, there are several substantial differences in the cascading source and effect modeling chain, necessitating for complex workflows, involving still larger gaps in data and knowledge, and requiring different approaches in dealing with uncertainties. The European Cooperation in Science and Technology (COST) Action AGITHAR (Accelerating Global Science in Probabilistic Hazard and Risk Analysis) has run for four years and has since then gathered parts of the scientific community around PTHA/PTRA and made some substantial progress in communicating and unifying the underlying concepts. Additionally, the effort has allowed the European tsunami community to coordinate a number of new research efforts and infrastrucutral developments, which are of benefit for the global science in PTHA/PTRA. In this presentation we will outline the results of AGITHAR's major deliverables, a compilation of research gaps in PTHA/PTRA and uncertainty communication, findings in interdisciplinary tsunami research cooperation, and a collection of current practices in PTHA/PTRA. Ideas and opportunities of sustaining AGITHAR's output into the future will be given.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-03
    Description: Probabilistic Tsunami Forecasting (PTF) combines early estimates of earthquake parameters with ensembles of urgent tsunami propagation simulations through the Tsunami-HySEA model. In the present implementation, the PTF is initialised by the earthquake information, but not updated further with new data. In the recently started Horizon Europe project DT-GEO work has started upgrading it into a Digital Twin providing a time dependent update of the model when new data becomes available. This enables a close to real time synthesis of data products and numerical models, continuously updating the model forecast as new data are continuously assimilated. In DT-GEO, an extended set of data sources, including improved earthquake solutions, sea level tsunami data, and GNSS, will be integrated. Secondly, the Digital Twin will implement a modularised inclusion of improved wave and source physics through dispersion, non-hydrostatic tsunami generation, inundation, improved earthquake physics, and cascading earthquake triggered landslide tsunamis. The model will be tested at site demonstrators, in the Mediterranean Sea for eastern Sicily and Samos, and in the Pacific Ocean for Chile and Japan. The presentation will explain how the PTF as it works today, followed by an outline of the design of the components in the Digital Twin. The presentation will finally describe initial improvements and plans for further development, including long term plans such as potential integration into Destination Earth and service provision within EPOS-ERIC. This work is supported by the European Union’s Horizon Europe Research and Innovation Program under grant agreement No 101058129 (DT-GEO, https://dtgeo.eu/).
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-15
    Description: Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community development.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-21
    Description: The EU Center of Excellence for Exascale in Solid Earth (ChEESE) develops exascale transition capabilities in the domain of Solid Earth, an area of geophysics rich in computational challenges embracing different approaches to exascale (capability, capacity, and urgent computing). The first implementation phase of the project (ChEESE-1P; 2018–2022) addressed scientific and technical computational challenges in seismology, tsunami science, volcanology, and magnetohydrodynamics, in order to understand the phenomena, anticipate the impact of natural disasters, and contribute to risk management. The project initiated the optimisation of 10 community flagship codes for the upcoming exascale systems and implemented 12 Pilot Demonstrators that combine the flagship codes with dedicated workflows in order to address the underlying capability and capacity computational challenges. Pilot Demonstrators reaching more mature Technology Readiness Levels (TRLs) were further enabled in operational service environments on critical aspects of geohazards such as long-term and short-term probabilistic hazard assessment, urgent computing, and early warning and probabilistic forecasting. Partnership and service co-design with members of the project Industry and User Board (IUB) leveraged the uptake of results across multiple research institutions, academia, industry, and public governance bodies (e.g. civil protection agencies). This article summarises the implementation strategy and the results from ChEESE-1P, outlining also the underpinning concepts and the roadmap for the on-going second project implementation phase (ChEESE-2P; 2023–2026).
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-21
    Description: The Euro-Mediterranean Submarine landSlide (EMSS) database is a catalogue of submarine landslides of the Mediterranean Sea and the European continental margins of the Atlantic and Arctic Oceans. The catalogue is compiled from data available in the literature as well as information collected from geophysical data and so far not published in the scientific literature. A first version has been recently made available online (https://ls3gp.icm.csic.es/?page_id=553) and OGC services are being developed to be available soon through the EPOS data portal (https://www.ics-c.epos-eu.org/) in the frame of the EU funded project Geo-INQUIRE. Within Geo-INQUIRE we are currently working on a second version of the catalogue improving both areal coverage in the Atlantic Ocean and information relative to the source areas (as opposed to the previous version where only deposits and scars was considered). The aim of the latter improvement is to better characterize the failure and post-failure stages of submarine landslides. The new catalogue stores polygon and polyline geospatial features related to landslide deposits, landslide source areas and landslide scars as well as information relative to age, volume, area, runout, thickness, typology, scar elevation, relevant slopes and depths as well as related metadata. The catalogue includes submarine landslides that span from Miocene to Present day, although a clear bias exists towards submarine landslides of younger age, particularly for the smaller events. The reason for this is that the older and smaller events are difficult to identify on lower resolution geophysical data sets in deep-water and large sub-surface depths. The catalogue aims to offer improved understanding of mass-wasting processes, the potentially resulting tsunamis and derived geohazard. Recent case studies using a data subset (Gulf of Cadiz, SW Iberian Margin) portray the application of such type of databases in (probabilistic) analysis of submarine slope instability and tsunami-genesis from submarine landslides. We believe the current EMSS is the seed for the world ocean submarine landslide database. In this regard, we encourage the offshore geohazards community to contribute to enlarge the database. Shapefile templates will be made available to ease the task. This work is supported by the European Union’s Horizon Europe Research and Innovation Program under grant agreement No 101058518 (Geo-INQUIRE).
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...