ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (18)
  • 1
    Publication Date: 2023-01-11
    Description: Globally, freshwater systems are degrading due to excessive water withdrawals. We estimate that if rivers’ environmental flow requirements were protected, the associated decrease in irrigation water availability would reduce global yields by ~5%. As one option to increase food supply within limited water resources, we show that dietary changes towards less livestock products could compensate for this effect. If all currently grown edible feed was directly consumed by humans, we estimate that global food supply would even increase by 19%. We thus provide evidence that dietary changes are an important strategy to harmonize river flow protection with sustained food supply.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Ecosystems are under multiple stressors and impacts can be measured with multiple variables. Humans have altered mass and energy flows of basically all ecosystems on Earth towards dangerous levels. However, integrating the data and synthesizing conclusions is becoming more and more complicated. Here we present an automated and easy to apply R package to assess terrestrial biosphere integrity which combines 2 complementary metrics: The BioCol metric quantifies the human colonization pressure exerted on the biosphere through alteration and extraction (appropriation) of net primary productivity, whereas the EcoRisk metric quantifies biogeochemical and vegetation structural changes as a proxy for the risk of ecosystem destabilization. Applied to simulations with the dynamic global vegetation model LPJmL5 for 1500–2016, we find that presently (period 2007–2016), large regions show modification and extraction of 〉25 % of the preindustrial potential net primary production, leading to drastic alterations in key ecosystem properties and suggesting a high risk for ecosystem destabilization. In consequence of these dynamics, EcoRisk shows particularly high values in regions with intense land use and deforestation, but also in regions prone to impacts of climate change such as the arctic and boreal zone. The metrics presented here enable global-scale, spatially explicit evaluation of historical and future states of the biosphere and are designed for use by the wider scientific community, not only limited to assessing biosphere integrity, but also to benchmark model performance. The package will be maintained on GitHub and through that we encourage application also to other models and data sets.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-11
    Description: Climate stabilization is crucial for restabilizing the Earth system but should not undermine biosphere integrity, a second pillar of Earth system functioning. This is of particular con- cern if it is to be achieved through biomass-based negative emission (NE) technologies that compete for land with food production and ecosystem protection. We assess the NE con- tribution of land- and calorie-neutral pyrogenic carbon capture and storage (LCN-PyCCS) facilitated by biochar-based fertilization, which sequesters carbon and reduces land demand by increasing crop yields. Applying the global biosphere model LPJmL with an enhanced representation of fast-growing species for PyCCS feedstock production, we calculated a land-neutral global NE potential of 0.20–1.10 GtCO2 year−1 assuming 74% of the biochar carbon remaining in the soil after 100 years (for + 10% yield increase; no potential for + 5%; 0.61–1.88 GtCO 2 year−1 for + 15%). The potential is primarily driven by the achiev- able yield increase and the management intensity of the biomass producing systems. NE production is estimated to be enhanced by + 200–270% if management intensity increases from a marginal to a moderate level. Furthermore, our results show sensitivity to process- specific biochar yields and carbon contents, producing a difference of + 40–75% between conservative assumptions and an optimized setting. Despite these challenges for making world-wide assumptions on LCN-PyCCS systems in modeling, our findings point to dis- crepancies between the large NE volumes calculated in demand-driven and economically optimized mitigation scenarios and the potentials from analyses focusing on supply-driven approaches that meet environmental and socioeconomic preconditions as delivered by LCN-PyCCS.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-14
    Description: Die Wissenschaftsplattform Nachhaltigkeit 2030 (wpn2030) begleitet u. a. den Staatssekretärsausschuss für nachhaltige Entwicklung mit wissenschaftlichen Impulsen. Für diesen Anlass wie auch für weitere wissensbasierte Politikprozesse wurde das DNS-Lab als Format entwickelt und nun erstmals umgesetzt. In kurzer Zeit, einem halben Tag, werden bestehendes Wissen und Perspektiven zu einem bestimmten Thema aus einem breiten transdisziplinären Spektrum integriert, verdichtet und daraus entsprechende Impulse entwickelt. Das DNS-Lab „Politiken für nachhaltigen Konsum stärken“ fand am 4. März statt mit Vertreter*innen von sechs Bundesressorts, aus dem Parlamentarischen Beirat für nachhaltige Entwicklung (PBnE) und mit Expert*innen aus Wissenschaft, Wirtschaft und Gesellschaft. Den Teilnehmenden danken wir für ihre Beiträge. Der vorliegende Impuls speist sich aus den Lab-Ergebnissen sowie aus den Ergebnissen der wpn2030-Arbeitsgruppe „Nachhaltiger Konsum“ von 2019 und knüpft an vorliegende Empfehlungen aus der Wissenschaft und an weitere Aktivitäten der jüngeren Vergangenheit an, wie beispielsweise an die 2020 vorlegte externe Evaluierung des Nationalen Programms für nachhaltigen Konsum (NPNK).
    Language: German
    Type: info:eu-repo/semantics/workingPaper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-01
    Print ISSN: 0264-1275
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-23
    Description: We present a study to estimate the large-scale landscape history of a continental margin, by establishing a source-to-sink volume balance between the eroding onshore areas and the offshore basins. Assuming erosion as the primary process for sediment production, we strive to constrain a numerical model of landscape evolution that balances the volumes of eroded materials from the continent and that deposited in the corresponding basins, with a ratio imposed for loss of erosion products. We use this approach to investigate the landscape history of Madagascar since the Late Cretaceous. The uplift history prescribed in the model is inferred from elevations of planation surfaces formed at various ages. By fitting the volumes of terrigenous sediments in the Morondava Basin along the west coast and the current elevation of the island, the landscape evolution model is optimized by constraining the erosion law parameters and ratios of sediment loss. The results include a best-fit landscape evolution model, which features two major periods of uplift and erosion during the Late Cretaceous and the middle to late Cenozoic. The model supports suggestions from previous studies that most of the high topography of the island was constructed since the middle to late Miocene, and on the central plateau the erosion has not reached an equilibrium with the high uplift rates in the late Cenozoic. Our models also indicate that over the geological time scale, a significant portion of materials eroded from Madagascar was not archived in the offshore basin, possibly consumed by chemical weathering, the intensity of which might have varied with climate.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-02
    Description: We use a Landscape Evolution Model including flexural isostasy to investigate the influence of inherited foreland relief on the stratigraphic evolution of the retro-foreland domain during mountain building. We show models with four different types of initial relief in the foreland domain: at sea level, elevated (+300 m), a 1 km-deep and 100 km-wide foreland basin associated with either a forebulge at sea level or elevated at +300 m. During the first 10 Myr of simulation, the landscape evolution of the foreland is significantly altered by its inherited bathymetry/topography. The impact is then smoothed out once the foreland slope has stabilized and develops a transverse drainage network. Models record a long-term shallowing-up mega-sequence driven by the increase in sediment production rate in the uplifting range and the decrease in the rate of flexural accommodation space creation in the foreland basin. The initial relief of the foreland domain alters the timing of its transition from the under-filled to the over-filled phase. An initially deep foreland basin is twice as thick as an initially elevated foreland. It records deep marine deposits while a foreland initially at sea level records thin shallow marine and an elevated foreland records continental deposits. The forebulge is buried by continental deposits in an initially elevated foreland while it is buried by marine sediments in other models. Alluvial fans at the foot of the range are more elevated in initially elevated forelands. We discuss our results of modeled stratigraphic architecture in comparison with the Pyrenean, Alpine and Andean retro-foreland basins.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-02
    Description: Arctic river deltas define the interface between the terrestrial Arctic and the Arctic Ocean. They are the site of sediment, nutrient, and soil organic carbon discharge to the Arctic Ocean. Arctic deltas are unique globally because they are underlain by permafrost and acted on by river and sea ice, and many are surrounded by a broad shallow ramp. Such ramps may buffer the delta from waves, but as the climate warms and permafrost thaws, the evolution of Arctic deltas will likely take a different course, with implications for both the local scale and the wider Arctic Ocean. One important way to understand and predict the evolution of Arctic deltas is through numerical models. Here we present ArcDelRCM.jl, an improved reduced-complexity model (RCM) of arctic delta evolution based on the DeltaRCM-Arctic model (Lauzon et al., 2019), which we have reconstructed in Julia language using published information. Unlike previous models, ArcDelRCM.jl is able to replicate the ramp around the delta. We have found that the delayed breakup of the so-called “bottom-fast ice” (i.e. ice that is in direct contact with the bed of the channel or the sea, also known as “bed-fast ice”) on and around the deltas is ultimately responsible for the appearance of the ramp feature in our models. However, changes made to the modelling of permafrost erosion and the protective effects of bottom-fast ice are also important contributors. Graph analyses of the delta network performed on ensemble runs show that deltas produced by ArcDelRCM.jl have more interconnected channels and contain less abandoned subnetworks. This may suggest a more even feeding of sediments to all sections of the delta shoreline, supporting ramp growth. Moreover, we showed that the morphodynamic processes during the summer months remain active enough to contribute significant sediment input to the growth and evolution of Arctic deltas and thus should not be neglected in simulations gauging the multi-year evolution of delta features. Finally, we tested a strong climate-warming scenario on the simulated deltas of ArcDelRCM.jl, with temperature, discharge, and ice conditions consistent with RCP7–8.5. We found that the ramp features degrade on the timescale of centuries and effectively disappear in under 1 millennium. Ocean processes, which are not included in these models, may further shorten the timescale. With the degradation of the ramps, any dissipative effects on wave energy they offered would also decrease. This could expose the sub-aerial parts of the deltas to increased coastal erosion, thus impacting permafrost degradation, nutrients, and carbon releases.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-05
    Description: Large swaths of the Earth's high-northern latitude land surface consist of permafrost landscapes. Permafrost is a key factor for hydrology, ecology, biogeochemistry, and for human infrastructure. It contains one of the largest soil carbon reservoirs on Earth, which will partially be mobilised upon thaw and will accelerate global climate warming. A quantitative understanding of permafrost thaw is therefore essential. Surface manifestations of permafrost thaw include thermokarst lake growth and drainage, gully formation, and retrogressive thaw slumping. These processes exert important influences on carbon, energy, water, and sediment balances, with implications also on habitats and surrounding ecosystems. The polar regions, where most of the permafrost landscapes are found, have been experiencing enhanced warming due to Arctic amplification. The warming leads to changes in the balance of and feedback between surface processes associated with permafrost thaw. Being able to predict the future of these processes on a pan-Arctic scale under various climate scenarios is therefore important. One widely used tool for modelling energy balance and the freeze-thaw process of permafrost is CryoGrid. We aim to develop a physics-informed machine-learning framework to upscale and accelerate CryoGrid to predict the future evolution of surface processes arising from permafrost thaw. We first calibrate the ability of CryoGrid to reproduce observed surface manifestations of permafrost thaw. Next, we move towards utilising physics-constrained deep-learning techniques to enable the usage of CryoGrid on a pan-Arctic scale to efficiently make various predictions. The resulting predicted observables can be used to constrain or indicate specific climate variables.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-08-18
    Description: It is widely recognized that collisional mountain belt topography is generated by crustal thickening and lowered by river bedrock erosion, linking climate and tectonics. However, whether surface processes or lithospheric strength control mountain belt height, shape and longevity remains uncertain. Additionally, how to reconcile high erosion rates in some active orogens with long-term survival of mountain belts for hundreds of millions of years remains enigmatic. Here we investigate mountain belt growth and decay using a new coupled surface process and mantle-scale tectonic model. End-member models and the new non-dimensional Beaumont number, Bm, quantify how surface processes and tectonics control the topographic evolution of mountain belts, and enable the definition of three end-member types of growing orogens: type 1, non-steady state, strength controlled (Bm 〉 0.5); type 2, flux steady state, strength controlled (Bm ≈ 0.4−0.5); and type 3, flux steady state, erosion controlled (Bm 〈 0.4). Our results indicate that tectonics dominate in Himalaya–Tibet and the Central Andes (both type 1), efficient surface processes balance high convergence rates in Taiwan (probably type 2) and surface processes dominate in the Southern Alps of New Zealand (type 3). Orogenic decay is determined by erosional efficiency and can be subdivided into two phases with variable isostatic rebound characteristics and associated timescales. The results presented here provide a unified framework explaining how surface processes and lithospheric strength control the height, shape, and longevity of mountain belts.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...