ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2023-03-22
    Description: Volcanic plume aerosol following the paroxysmal event of Mount Etna (Italy) in February 21st - 26th, 2021 was detected in Naples area (Italy), together with transport of Saharan dust aerosol, combining lidar, sunphotometer and satellite observations with back-trajectories and dispersion models simulations. Lidar data allowed to clearly distinguish the two main aerosol components, to investigate the spectral dependence of the aerosol optical properties and to retrieve their microphysical properties, essential for a detailed aerosol characterization. A new Monte Carlo algorithm, capable of retrieving the particle size distribution from lidar measurements, was applied. Lidar results are in good agreement with columnar integrated sunphotometer data. This combination of novel lidar observations of the vertically-resolved aerosol microphysics, column observations and modelling allows for a more complete description of multi-layered aerosol conditions.
    Description: Published
    Description: 106099
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-20
    Description: During the extended activity of Mount Etna volcano in February–April 2021, three distinct paroxysmal events took place from February 21 to 26, which were associated with a very uncommon transport of the injected upper-tropospheric plumes toward the north. Using a synergy of observations and modeling, we characterized the emissions and three-dimensional dispersion for these three plumes, monitored their downwind distribution and optical properties, and estimated their radiative impacts at selected locations. With a satellite-based source inversion, we estimate the emitted sulfur dioxide (SO2) mass at an integrated value of 55 kt and plumes injections at up to 12 km altitudes, which qualifies this series as an extreme event for Mount Etna. Then, we combine Lagrangian dispersion modeling, initialized with measured temporally resolved SO2 emission fluxes and altitudes, with satellite observations to track the dispersion of the three individual plumes. The transport toward the north allowed the height-resolved downwind monitoring of the plumes at selected observatories in France, Italy, and Israel, using LiDARs and photometric aerosol observations. Volcanic-specific aerosol optical depths (AODs) in the visible spectral range ranging from about 0.004 to 0.03 and local daily average shortwave radiative forcing (RF) ranging from about −0.2 to −1.2 W m −2 (at the top of atmosphere) and from about −0.2 to −3.0 W m −2 (at the surface) are found. The composition (possible presence of ash), AOD, and RF of the plume have a large inter-plume and intra-plume variability and thus depend strongly on the position of the sampled section of the plumes.
    Description: Published
    Description: e2021JD035974
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...