ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-01-13
    Schlagwort(e): DATE/TIME; Gross primary production/Respiration rate ratio; Gross primary production of oxygen; Identification; Net calcification rate of calcium carbonate; Net community calcification rate of calcium carbonate, dark; Net community calcification rate of calcium carbonate, light; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Respiration rate, oxygen; Treatment
    Materialart: Dataset
    Format: text/tab-separated-values, 216 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-01-13
    Beschreibung: The interaction between current flow and topography (e.g., surface ripples) in shallow, permeable coral reef carbonate sediments establishes pressure gradients that increase the rate of sediment-water solute exchange relative to fluid shear along a flat bottom. It is currently unknown how this effect from surface ripples will modify the rate at which the sediment porewater is exposed to future chemical changes in the overlying water column, such as elevated pCO2 that is causing ocean acidification (OA). To address this question, this study used a series of 22-hour incubations in flume aquaria with permeable calcium carbonate sediment communities and examined the interactive effect of pCO2 (400 and 1000 µatm) and surface topography (flat and rippled sediments) on carbonate sediment metabolism and dissolution. According to dissolved oxygen optode image analysis, the presence of surface ripples increased the oxygenated area below the sediment surface by 295% relative to flat sediments. This was reflected in the sediment-to-water column fluxes of dissolved oxygen, where rippled sediments exhibited rates of respiration (R) and gross primary production (GPP) that were ~ 45% and ~ 50% higher, respectively, than flat sediments. An increase in pCO2 shifted the sediments in the flat flumes from net calcifying (Gnet 〉 0) to net dissolving (Gnet 〈 0), an effect that was amplified an additional ~ 60% in rippled sediments. These results suggest that current estimates of coral reef carbonate sediment Gnet may be underestimating the dissolution response to OA where the carbonate sediment environment exhibits ripples in the topography.
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-03-15
    Schlagwort(e): Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Oxygen; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Salinity; Temperature, water; Time point, descriptive; Treatment
    Materialart: Dataset
    Format: text/tab-separated-values, 1824 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-01-19
    Beschreibung: The vapor pressure deficit reflects the difference between how much moisture the atmosphere could and actually does hold, a factor that fundamentally affects evapotranspiration, ecosystem functioning, and vegetation carbon uptake. Its spatial variability and long-term trends under natural versus human-influenced climate are poorly known despite being essential for predicting future effects on natural ecosystems and human societies such as crop yield, wildfires, and health. Here we combine regionally distinct reconstructions of pre-industrial summer vapor pressure deficit variability from Europe’s largest oxygen-isotope network of tree-ring cellulose with observational records and Earth system model simulations with and without human forcing included. We demonstrate that an intensification of atmospheric drying during the recent decades across different European target regions is unprecedented in a pre-industrial context and that it is attributed to human influence with more than 98% probability. The magnitude of this trend is largest in Western and Central Europe, the Alps and Pyrenees region, and the smallest in southern Fennoscandia. In view of the extreme drought and compound events of the recent years, further atmospheric drying poses an enhanced risk to vegetation, specifically in the densely populated areas of the European temperate lowlands.
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...