ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 2020-2024  (2)
Collection
  • Articles  (2)
Language
Years
Year
  • 1
    Publication Date: 2023-01-13
    Description: The TTZ-South seismic profile follows the Teisseyre-Tornquist zone (TTZ) at the SW margin of the East European craton (EEC). Investigation results reveal the upper lithospheric structure as representing the NW-vergent, NE-SW striking overthrust-type, Paleoproterozoic (~1.84–1.8 Ga) Fennoscandia-Sarmatia suture. The Sarmatian segment of the EEC comprises two crustal-scale tectonic thrust slices: the Moldavo-Podolian and Lublino-Volhynian basement units, overriding the northerly located Lysogoro-Radomian unit of Fennoscandian affinity. The combined results of the TTZ-South and other nearby deep seismic profiles are consistent with a continuation of the EEC cratonic basement across the TTZ to the SW and its plunging into the deep substratum of the adjacent Paleozoic platform. Extensional deformation responsible for the formation of the mid to late Proterozoic (~1.4–0.6 Ga), SW-NE trending Orsha-Volhynia rift basin is probably also recorded. The thick Ediacaran succession deposited in the rift was later tectonically thickened due to Variscan deformation. The Moho depth varies between 37 and 49 km, resulting in the thinnest crust in the SE, sharp depth changes across the TTZ, and slow shallowing from 49 to 43 km to the NW. The abrupt Moho depth increase from 43 to 49 km is considered to reflect the overlying lower crust tectonic duplication within the suture zone.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-15
    Description: We use seismic waveform data from the AlpArray Seismic Network and three other temporary seismic networks, to perform receiver function (RF) calculations and time-to-depth migration to update the knowledge of the Moho discontinuity beneath the broader European Alps. In particular, we set up a homogeneous processing scheme to compute RFs using the time-domain iterative deconvolution method and apply consistent quality control to yield 112 205 high-quality RFs. We then perform time-to-depth migration in a newly implemented 3D spherical coordinate system using a European-scale reference P and S wave velocity model. This approach, together with the dense data coverage, provide us with a 3D migrated volume, from which we present migrated profiles that reflect the first-order crustal thickness structure. We create a detailed Moho map by manually picking the discontinuity in a set of orthogonal profiles covering the entire area. We make the RF dataset, the software for the entire processing workflow, as well as the Moho map, openly available; these open-access datasets and results will allow other researchers to build on the current study. How to cite. Michailos, K., Hetényi, G., Scarponi, M., Stipčević, J., Bianchi, I., Bonatto, L., Czuba, W., Di Bona, M., Govoni, A., Hannemann, K., Janik, T., Kalmár, D., Kind, R., Link, F., Lucente, F. P., Monna, S., Montuori, C., Mroczek, S., Paul, A., Piromallo, C., Plomerová, J., Rewers, J., Salimbeni, S., Tilmann, F., Środa, P., Vergne, J., and the AlpArray-PACASE Working Group: Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database, Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, 2023.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...