ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-08-01
    Beschreibung: Marine particles of different nature are found throughout the global ocean. The term "marine particles"describes detritus aggregates and fecal pellets as well as bacterioplankton, phytoplankton, zooplankton and nekton. Here, we present a global particle size distribution dataset obtained with several Underwater Vision Profiler 5 (UVP5) camera systems. Overall, within the 64 μm to about 50 mm size range covered by the UVP5, detrital particles are the most abundant component of all marine particles; thus, measurements of the particle size distribution with the UVP5 can yield important information on detrital particle dynamics. During deployment, which is possible down to 6000 m depth, the UVP5 images a volume of about 1 L at a frequency of 6 to 20 Hz. Each image is segmented in real time, and size measurements of particles are automatically stored. All UVP5 units used to generate the dataset presented here were inter-calibrated using a UVP5 high-definition unit as reference. Our consistent particle size distribution dataset contains 8805 vertical profiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset is available at 10.1594/PANGAEA.924375.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-03-28
    Beschreibung: The Arctic Ocean (AO) is being rapidly transformed by global warming, but its biodiversity remains understudied for many planktonic organisms, in particular for unicellular eukaryotes that play pivotal roles in marine food webs and biogeochemical cycles. The aim of this study was to characterize the biogeographic ranges of species that comprise the contemporary pool of unicellular eukaryotes in the AO as a first step toward understanding mechanisms that structure these communities and identifying potential target species for monitoring. Leveraging the Tara Oceans DNA metabarcoding data, we mapped the global distributions of operational taxonomic units (OTUs) found on Arctic shelves into five biogeographic categories, identified biogeographic indicators, and inferred the degree to which AO communities of unicellular eukaryotes share members with assemblages from lower latitudes. Arctic/Polar indicator OTUs, as well as some globally ubiquitous OTUs, dominated the detection and abundance of DNA reads in the Arctic samples. OTUs detected only in Arctic samples (Arctic-exclusives) showed restricted distribution with relatively low abundances, accounting for 10–16% of the total Arctic OTU pool. OTUs with high abundances in tropical and/or temperate latitudes (non-Polar indicators) were also found in the AO but mainly at its periphery. We observed a large change in community taxonomic composition across the Atlantic-Arctic continuum, supporting the idea that advection and environmental filtering are important processes that shape plankton assemblages in the AO. Altogether, this study highlights the connectivity between the AO and other oceans, and provides a framework for monitoring and assessing future changes in this vulnerable ecosystem.
    Schlagwort(e): Marine protists ; Unicellular ; Phytoplankton ; Global change ; Advection ; Environmental filtering
    Repository-Name: National Museum of Natural History, Netherlands
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-04-03
    Beschreibung: Marine planktonic eukaryotes play critical roles in global biogeochemical cycles and climate. However, their poor representation in culture collections limits our understanding of the evolutionary history and genomic underpinnings of planktonic ecosystems. Here, we used 280 billion Tara Oceans metagenomic reads from polar, temperate, and tropical sunlit oceans to reconstruct and manually curate more than 700 abundant and widespread eukaryotic environmental genomes ranging from 10 Mbp to 1.3 Gbp. This genomic resource covers a wide range of poorly characterized eukaryotic lineages that complement long-standing contributions from culture collections while better representing plankton in the upper layer of the oceans. We performed the first, to our knowledge, comprehensive genome-wide functional classification of abundant unicellular eukaryotic plankton, revealing four major groups connecting distantly related lineages. Neither trophic modes of plankton nor its vertical evolutionary history could completely explain the functional repertoire convergence of major eukaryotic lineages that coexisted within oceanic currents for millions of years.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-03-04
    Beschreibung: The way Alpine rivers mobilize, convey and store coarse material during high-magnitude events is poorly understood, notably because it is difficult to obtain measurements of bedload transport at the watershed scale. Seismic sensor data, evaluated with appropriate seismic physical models, can provide that missing link by yielding time-varying estimates of bedload transport albeit with non-negligible uncertainty. Low cost and ease of installation allow for networks of sensors to be deployed, providing continuous, watershed-scale insights into bedload transport dynamics. Here, we deploy a network of 24 seismic sensors to estimate coarse material fluxes in a 13.4 km2 Alpine watershed during a high-magnitude transport event. First, we benchmark the seismic inversion routine with an independent time-series of bedload transport obtained with a calibrated acoustic system. Then, we apply the procedure to the other seismic sensors across the watershed. Propagation velocities derived from cross-correlation analysis between spatially consecutive bedload transport time-series were too high with respect to typical bedload transport velocity suggesting that a faster-moving water wave (re-)mobilizes local coarse material. Spatially distributed estimates of bedload transport reveal a relative inefficiency of Alpine watersheds in evacuating coarse material, even during a relatively infrequent high-magnitude bedload transport event. Significant inputs estimated for some tributaries were rapidly attenuated as the main river crossed less hydraulically efficient reaches. Only a small proportion of the total amount of material mobilized in the watershed was exported at the outlet. Multiple periods of competent flows are likely necessary to evacuate coarse material mobilized throughout the watershed during individual bedload transport events.
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-02-01
    Print ISSN: 0048-9697
    Digitale ISSN: 1879-1026
    Thema: Energietechnik
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-10-28
    Beschreibung: The adenosine monophosphate activated protein kinase (AMPK) is critical in the regulation of important cellular functions such as lipid, glucose, and protein metabolism; mitochondrial biogenesis and autophagy; and cellular growth. In many diseases—such as metabolic syndrome, obesity, diabetes, and also cancer—activation of AMPK is beneficial. Therefore, there is growing interest in AMPK activators that act either by direct action on the enzyme itself or by indirect activation of upstream regulators. Many natural compounds have been described that activate AMPK indirectly. These compounds are usually contained in mixtures with a variety of structurally different other compounds, which in turn can also alter the activity of AMPK via one or more pathways. For these compounds, experiments are complicated, since the required pure substances are often not yet isolated and/or therefore not sufficiently available. Therefore, our goal was to develop a screening tool that could handle the profound heterogeneity in activation pathways of the AMPK. Since machine learning algorithms can model complex (unknown) relationships and patterns, some of these methods (random forest, support vector machines, stochastic gradient boosting, logistic regression, and deep neural network) were applied and validated using a database, comprising of 904 activating and 799 neutral or inhibiting compounds identified by extensive PubMed literature search and PubChem Bioassay database. All models showed unexpectedly high classification accuracy in training, but more importantly in predicting the unseen test data. These models are therefore suitable tools for rapid in silico screening of established substances or multicomponent mixtures and can be used to identify compounds of interest for further testing.
    Digitale ISSN: 1420-3049
    Thema: Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2023-08-01
    Beschreibung: Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 〈 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-08-08
    Beschreibung: Aim: The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) as-sess the ability of various environmental- based ocean regionalizations to explain the distribution of these communities. Location: Global ocean, 0–500 m depth. Time Period: 2008–2019. Major Taxa Studied: Twenty-eight groups of large mesoplanktonic and macroplank-tonic organisms, covering Metazoa, Rhizaria and Cyanobacteria. Methods: From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribu-tion of large (〉600 μm) mesoplanktonic organisms. Among the 6.8 million imaged ob-jects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA). Results: Within the observed size range, epipelagic plankton communities were Trichodesmium- enriched in the intertropical Atlantic, Copepoda- enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high lati-tudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin- level environmental conditions. Main Conclusions: In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cy-anobacteria in structuring large mesoplankton communities.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...