ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • PANGAEA  (2)
  • 2020-2024  (4)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Estuaries are recognized as one of the habitats most vulnerable to coastal ocean acidification due to seasonal extremes and prolonged duration of acidified conditions. This is combined with co-occurring environmental stressors such as increased temperature and low dissolved oxygen. Despite this, evidence of biological impacts of ocean acidification in estuarine habitats is largely lacking. By combining physical, biogeochemical, and biological time-series observations over relevant seasonal-to-interannual time scales, this study is the first to describe both the spatial and temporal variation of biological response in the pteropod Limacina helicina to estuarine acidification in association with other stressors. Using clustering and principal component analyses, sampling sites were grouped according to their distribution of physical and biogeochemical variables over space and time. This identified the most exposed habitats and time intervals corresponding to the most severe negative biological impacts across three seasons and three years. We developed a cumulative stress index as a means of integrating spatial-temporal OA variation over the organismal life history. Our findings show that over the 2014–2016 study period, the severity of low aragonite saturation state combined with the duration of exposure contributed to overall cumulative stress and resulted in severe shell dissolution. Seasonally-variable estuaries such as the Salish Sea (Washington, U.S.A.) predispose sensitive organisms to more severe acidified conditions than those of coastal and open-ocean habitats, yet the sensitive organisms persist. We suggest potential environmental factors and compensatory mechanisms that allow pelagic calcifiers to inhabit less favorable habitats and partially offset associated stressors, for instance through food supply, increased temperature, and adaptation of their life history. The novel metric of cumulative stress developed here can be applied to other estuarine environments with similar physical and chemical dynamics, providing a new tool for monitoring biological response in estuaries under pressure from accelerating global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-01
    Print ISSN: 0048-9697
    Electronic ISSN: 1879-1026
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-19
    Description: Shelled pteropods are widely regarded as bioindicators for ocean acidification, because their fragile aragonite shells are susceptible to increasing ocean acidity. While short-term incubations have demonstrated that pteropod calcification is negatively impacted by ocean acidification, we know little about net calcification in response to varying ocean conditions in natural populations. Here, we examine in situ calcification of Limacina helicina pteropods collected from the California Current Ecosystem, a coastal upwelling system with strong spatial gradients in ocean carbonate chemistry, dissolved oxygen and temperature. Depth-averaged pH ranged from 8.03 in warmer offshore waters to 7.77 in cold CO2-rich waters nearshore. Based on high-resolution micro-CT technology, we showed that shell thickness declined by 37% along the upwelling gradient from offshore to nearshore water. Dissolution marks covered only 2% of the shell surface area and were not associated with the observed variation in shell thickness. We thus infer that pteropods make thinner shells where upwelling brings more acidified and colder waters to the surface. Probably the thinner shells do not result from enhanced dissolution, but are due to a decline in calcification. Reduced calcification of pteropods is likely to have major ecological and biogeochemical implications for the cycling of calcium carbonate in the oceans.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Diameter; Dissolution; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; Identification; LATITUDE; Limacina helicina; Location; LONGITUDE; Mollusca; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Registration number of species; Salinity; Shell, number of whorls; Shell surface area; Shell thickness; Silicate; Single species; Species; Station label; Temperate; Temperature, water; Type; Uniform resource locator/link to reference; Upwelling; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 2250 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-30
    Description: Global change is impacting the oceans in an unprecedented way with resulting changes in species distributions or species loss. There is increasing evidence that multiple environmental stressors act together to constrain species habitat more than expected from single stressor. Here, we conducted a comprehensive study of the combined impact of ocean warming and acidification (OWA) on a global distribution of pteropods, ecologically important pelagic calcifiers and an indicator species for ocean change. We co-validated three different approaches to evaluate the impact of OWA on pteropod survival and distribution. First, we used co-located physical, chemical, and biological data from oceanographic cruises and regional time-series; second, we conducted multifactorial experimental incubations using OWA to evaluate survival; and third, we validated pteropod distributions using global carbonate chemistry and observation datasets. Habitat suitability indices and global distributions suggest that a multi-stressor framework is essential for understanding distributions of this pelagic calcifier.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Laboratory experiment; Limacina helicina; Mollusca; Mortality; Mortality, standard deviation; Mortality/Survival; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phosphate; Phosphate, standard deviation; Replicates; Salinity; Salinity, standard deviation; Silicate; Silicate, standard deviation; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 160 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...