ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (4)
  • Elsevier  (1)
  • 2020-2024  (5)
  • 1
    Publication Date: 2023-02-08
    Description: A method using a linear shallow water model is presented for decomposing the temporal variability of the barotropic streamfunction in a high‐resolution ocean model. The method is based in the vertically‐averaged momentum equations and is applied to the time series of annual mean streamfunction from the model configuration VIKING20 for the northern North Atlantic. An important result is the role played by the nonlinear advection terms in VIKING20 for driving transport. The method is illustrated by examining how the Gulf Stream transport in the recirculation region responds to the winter North Atlantic Oscillation (NAO). While no statistically significant response is found in the year overlapping with the winter NAO index, there is a tendency for the Gulf Stream transport to increase as the NAO becomes more positive. This becomes significant in lead years 1 and 2 when the mean flow advection (MFA) and eddy momentum flux (EMF) contributions, associated with nonlinear momentum advection, dominate. Only after 2 years, does the potential energy (PE) term, associated with the density field, start to play a role and it is only after 5 years that the transport dependence on the NAO ceases to be significant. It is also shown that the PE contribution to the transport streamfunction has significant memory of up to 5 years in the Labrador and Irminger Seas. However, it is only around the northern rim of these seas that VIKING20 and the transport reconstruction exhibit similar memory. This is due to masking by the MFA and EMF contributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Equatorial deep jets (EDJ) are vertically stacked, downward propagating zonal currents that alternate in direction with depth. In the tropical Atlantic, they have been shown to influence both surface conditions and tracer variability. Despite their importance, the EDJ are absent in most ocean models. Here we show that EDJ can be generated in an idealized ocean model when the model is driven only by the convergence of the meridional flux of intraseasonal zonal momentum diagnosed from a companion model run driven by steady wind forcing, corroborating the recent theory that intraseasonal momentum flux convergence maintains the EDJ. Additionally, the EDJ in our model nonlinearly generate mean zonal currents at intermediate depths that show similarities in structure to the observed circulation in the deep equatorial Atlantic, indicating their importance for simulating the tropical ocean mean state.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Mesoscale eddies can be strengthened by the absorption of submesoscale eddies resulting from mixed-layer baroclinic instabilities. This is shown for mesoscale eddies in the Agulhas Current system by investigating the kinetic energy cascade with a spectral and a coarse-graining approach in two model simulations of the Agulhas region. One simulation resolves mixed-layer baroclinic instabilities and one does not. When mixed-layer baroclinic instabilities are included, the largest submesoscale near-surface fluxes occur in winter-time in regions of strong mesoscale activity for upscale as well as downscale directions. The forward cascade at the smallest resolved scales occurs mainly in frontogenetic regions in the upper 30 m of the water column. In the Agulhas ring path, the forward cascade changes to an inverse cascade at a typical scale of mixed-layer eddies (15 km). At the same scale, the largest sources of the upscale flux occur. After the winter, the maximum of the upscale flux shifts to larger scales. Depending on the region, the kinetic energy reaches the mesoscales in spring or early summer aligned with the maximum of mesoscale kinetic energy. This indicates the importance of submesoscale flows for the mesoscale seasonal cycle. A case study shows that the underlying process is the mesoscale absorption of mixed-layer eddies. When mixed-layer baroclinic instabilities are not included in the simulation, the open-ocean upscale cascade in the Agulhas ring path is almost absent. This contributes to a 20 %-reduction of surface kinetic energy at mesoscales larger than 100 km when submesoscale dynamics are not resolved by the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights: • The pivot point for sea level shifted to the west of the Nino4 region in the 2000s. • This enabled the thermocline feedback to increase strongly in the Central Pacific. • The resulting increase in CP events maintains the pivot point to the west, a positive feedback mechanism. Monthly mean sea level variations computed using a linear, reduced-gravity, multi-mode model are combined with satellite measurements to explore why Central Pacific (CP) ENSO events occur more frequently since 2000s. The pivot point for sea level (and hence thermocline) variations has shifted westward in response to an increase in zonal wind stress variance in the western equatorial Pacific. As a result, the Nino4 region is increasingly to the east of the pivot point enabling the thermocline feedback to operate there, strengthening the Bjerknes feedback mechanism in the Nino4 region and leading to an increase in the occurrence of CP events. The increased variance of wind stress in the western Pacific is, in turn, caused by the resulting increase in the frequency of CP events. These arguments imply a positive feedback in which CP events are self-maintaining and suggest that they may be part of the natural variability of the climate system and could occur without the need for changes in external forcing.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: A 700‐year pre‐industrial control run with the MPI‐ESM‐LR model is used to investigate the link between the summer East Atlantic (SEA) pattern and the Pacific‐Caribbean rainfall dipole (PCD), a link that has previously been shown using ERA‐Interim reanalysis data. In the model, it is found that the link between the SEA and PCD is present in some multidecadal epochs but not in others. A simple statistical model reproduces this behaviour. In the statistical model, the SEA is represented by a white noise process plus a weak influence from the PCD based on the full 700 years of the model run. The statistical model is relevant to other extratropical modes of variability, for example, the winter North Atlantic Oscillation (NAO), that are weakly influenced by the Tropics. It follows that the link between the Tropics and the winter NAO is likely to undergo modulation on multidecadal time scales, as found in some previous studies. The results suggest that any predictability of the SEA, and by implication the NAO, based on tropical rainfall may not be robust and may, in fact, be modulated on multidecadal time scales, with implications for seasonal and decadal prediction systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...