ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (23)
  • 1955-1959  (17)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2023-01-19
    Description: Surface wave energy and dissipation are observed across the surf zone. Utilizing the concept of surface rollers, a new scaling is introduced to obtain the energy flux and dissipation related to rollers from Doppler velocities measured by a shore‐based X‐band marine radar. The dissipation of wave energy and hence the transformation of the incoming wave height (or energy) is derived using the coupled wave and roller energy balance equations. Results are compared to in‐situ wave measurements obtained from a wave rider buoy and two bottom mounted pressure wave gauges. A good performance in reproducing the significant wave height is found yielding an overall root‐mean‐square error of 0.22 m and a bias of −0.12 m. This is comparable to the skill of numerical wave models. In contrast to wave models, however, the radar observations of the wave and roller energy flux and dissipation neither require knowledge of the bathymetry nor the incident wave height. Along a 1.5 km long cross‐shore transect on a double‐barred, sandy beach in the southern North Sea, the highest dissipation rates are observed at the inner bar over a relatively short distance of less than 100 m. During the peak of a medium‐severe storm event with significant wave heights over 3 m, about 50% of the incident wave energy flux is dissipated at the outer bar.
    Description: Plain Language Summary: Ocean waves are carrying a large amount of mechanical energy which they have gained from the wind blowing over the ocean surface. At the coast this energy supply generates strong water motions, creates forces on coastal structures, moves sand, and can cause coastal erosion. It is therefore important to know when, where, and to what extent wave energy is reduced under different environmental conditions. The majority of the energy is removed by wave breaking. However, this process is still not completely understood which is partly due to fact that it is difficult to observe. This is particularly the case during storm conditions when it is very complicated to install and recover measurement equipment in the ocean. The present work describes a methodology to obtain such measurements using a special radar device which is installed at the beach; hence, it is not being impacted by harsh wave conditions. This approach will enable scientists to perform long‐term monitoring of wave breaking thus opening new opportunities to study beach processes and coastal changes.
    Description: Key Points: high‐resolution observations of surface wave and roller dissipation as well as the transformation of wave height across the surf zone. the concept of surface rollers is applied to shore‐based X‐band Doppler radar data. in storm conditions, 50% of the wave energy is dissipated at a submerged outer sandbar, but strongest dissipation occurs further inshore.
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: http://codm.hzg.de/codm
    Description: https://doi.org/10.1594/683PANGAEA.898407
    Description: https://doi.org/10.1594/PANGAEA.942014
    Description: https://doi.org/10.5281/zenodo.5787131
    Keywords: ddc:551.46 ; wave breaking ; X‐band radar ; roller concept ; close‐range remote sensing ; energy dissipation ; wave transformation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-12
    Description: Metal pollution poses a major threat to aquatic systems especially in anthropogenic influenced areas, in as much as metals are persistent in the environment. The freshwater snail Theodoxus fluviatilis has often been used as an indicator species for the ecological status in river monitoring. In the River Rhine, the native Northern-European form of T. fluviatilis is nowadays extinct, whilst the Danubian form is spreading along the river. The aim of our study was to investigate if the cryptic invader is affected by metal exposure present in the River Rhine and to discuss its potential as an indicator for metal pollution. Several environmental abiotic (14 water environmental variables plus five common metal concentrations in water and biofilm) and biotic parameters (biofilm mass) were measured across 23 sites along the River Rhine. Five population and six histopathological parameters were evaluated on snails collected at all 23 sites. Aqueous chromium concentration was positively correlated to the damage of male reproductive organs of T. fluviatilis, and higher ammonium concentration was correlated to a decrease in snail size and an increase in the proportion of juveniles. None of the analysed snail parameters was negatively correlated to concentrations of other metals measured, like copper and zinc. Therefore, based on the parameters evaluated, our results indicate that the Danubian form of T. fluviatilis is only restrictedly suitable as an indicator for metal pollution in the River Rhine system. Further field and laboratory investigations including other stressors are necessary to evaluate the indicator potential of the cryptic invader holistically.
    Keywords: ddc:577.6 ; Chromium ; Histopathological alterations ; Population parameters ; Gonads ; River pollution
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-28
    Description: The dataset contains temperature, salinity, oxygen saturation, chlorophyll a and turbidity data from the AWIPEV underwater observatory from the year 2020 in a temporal resolution of 1 hour. The cabled observatory is located in 12m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-spitsbergen.html). For a detailed description of the data see associated metadatafile "Metadata_description_svluwobs_data_2020.pdf"
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; AWIPEV; AWIPEV_based; AWIPEV_UW-Observatory; BAH; Chlorophyll a; Chlorophyll a, confidence value; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; Kongsfjorden, Spitsbergen, Arctic; MarGate; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Oxygen saturation; Oxygen Saturation; Oxygen saturation, confidence value; Salinity; Salinity, confidence value; Scientific diving; See further details: Metadata for the AWIPEV underwater observatory; Sensor technology; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Svalbard; Temperature; Temperature, water; Temperature, water, confidence value; turbidity; Turbidity (Formazin Turbidity Unit); Underwater observatory
    Type: Dataset
    Format: text/tab-separated-values, 61309 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-28
    Description: The dataset contains temperature, salinity, oxygen saturation, chlorophyll a and turbidity data from the Helgoland MarGate underwater observatory from the year 2017 in a temporal resolution of 1 hour. The cabled observatory is located in 10m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-helgoland.html). For a detailed description of the data see associated metadatafile "metadata_heluwobs_2017_hydrography.pdf"
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; Alfred-Wegener-Institute; BAH; Chlorophyll a; Chlorophyll a, confidence value; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helgoland, North Sea; Helgoland-UWO; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; in situ data; MarGate; MarGate underwater experimental area; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Observatory; Oxygen saturation; Oxygen saturation, confidence value; Salinity; Salinity, confidence value; Scientific diving; See further details: Metadata for the Helgoland underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Turbidity, confidence value; Turbidity (Formazin Turbidity Unit)
    Type: Dataset
    Format: text/tab-separated-values, 78452 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-28
    Description: The dataset contains temperature, salinity, oxygen saturation and turbidity data from the Helgoland MarGate underwater observatory from the year 2013 in a temporal resolution of 1 hour. The cabled observatory is located in 10m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-helgoland.html). For a detailed description of the data see associated metadatafile metadata_heluwobs_2013_hydrography.pdf
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; Alfred-Wegener-Institute; BAH; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helgoland; Helgoland, North Sea; Helgoland-UWO; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; in situ data; JERICO; MarGate; MarGate underwater experimental area; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Observatory; Oxygen saturation; Salinity; Scientific diving; See further details: Metadata for the Helgoland underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Towards a joint European research infrastructure network for coastal observatories; Turbidity (Formazin Turbidity Unit)
    Type: Dataset
    Format: text/tab-separated-values, 12972 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-28
    Description: The dataset contains temperature, salinity, oxygen saturation, chlorophyll a and turbidity data from the AWIPEV underwater observatory from the year 2019 in a temporal resolution of 1 hour. The cabled observatory is located in 12m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-spitsbergen.html). For a detailed description of the data see associated metadatafile "metadata_svulobs_2019_hydrography.pdf"
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; AWIPEV; AWIPEV_based; AWIPEV_UW-Observatory; BAH; Chlorophyll a; Chlorophyll a, confidence value; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; Kongsfjorden, Spitsbergen, Arctic; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Oxygen saturation; Oxygen saturation, confidence value; Salinity; Salinity, confidence value; See further details: Metadata for the AWIPEV underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Turbidity, confidence value; Turbidity (Formazin Turbidity Unit)
    Type: Dataset
    Format: text/tab-separated-values, 69550 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-09-28
    Description: The dataset contains temperature, salinity, oxygen saturation, chlorophyll a and turbidity data from the Helgoland MarGate underwater observatory from the year 2020 in a temporal resolution of 1 hour. The cabled observatory is located in 10m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-helgoland.html). For a detailed description of the data see associated metadatafile "Metadata_description_heluwobs_data_2020.pdf"
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; Alfred-Wegener-Institute; BAH; Chlorophyll a; Chlorophyll a, confidence value; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helgoland, North Sea; Helgoland-UWO; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; in situ data; MarGate; MarGate underwater experimental area; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Observatory; Oxygen saturation; Oxygen saturation, confidence value; Salinity; Salinity, confidence value; Scientific diving; See further details: Metadata for the Helgoland underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Turbidity, confidence value; Turbidity (Formazin Turbidity Unit)
    Type: Dataset
    Format: text/tab-separated-values, 61644 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-09-28
    Description: The dataset contains temperature, salinity, oxygen saturation, chlorophyll a and turbidity data from the Helgoland MarGate underwater observatory from the year 2019 in a temporal resolution of 1 hour. The cabled observatory is located in 10m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-helgoland.html). For a detailed description of the data see associated metadatafile "metadata_heluwobs_2019_hydrography.pdf"
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; Alfred-Wegener-Institute; BAH; Chlorophyll a; Chlorophyll a, confidence value; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helgoland, North Sea; Helgoland-UWO; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; in situ data; MarGate; MarGate underwater experimental area; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Observatory; Oxygen saturation; Oxygen saturation, confidence value; Salinity; Salinity, confidence value; Scientific diving; See further details: Metadata for the Helgoland underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Turbidity (Formazin Turbidity Unit)
    Type: Dataset
    Format: text/tab-separated-values, 50146 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-09-28
    Description: The dataset contains temperature, salinity, oxygen saturation and turbidity data from the Helgoland MarGate underwater observatory from the year 2015 in a temporal resolution of 1 hour. The cabled observatory is located in 10m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-helgoland.html). For a detailed description of the data see associated metadatafile metadata_heluwobs_2015_hydrography.pdf
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; Alfred-Wegener-Institute; BAH; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helgoland; Helgoland, North Sea; Helgoland-UWO; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; in situ data; JERICO; MarGate; MarGate underwater experimental area; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Observatory; Oxygen saturation; Salinity; Salinity, confidence value; Scientific diving; See further details: Metadata for the Helgoland underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Towards a joint European research infrastructure network for coastal observatories; Turbidity, confidence value; Turbidity (Formazin Turbidity Unit)
    Type: Dataset
    Format: text/tab-separated-values, 6276 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-09-28
    Description: The dataset contains temperature, salinity, oxygen saturation, chlorophyll a and turbidity data from the Helgoland MarGate underwater observatory from the year 2016 in a temporal resolution of 1 hour. The cabled observatory is located in 10m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-helgoland.html). For a detailed description of the data see associated metadatafile metadata_heluwobs_2016_hydrography.pdf
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; Alfred-Wegener-Institute; BAH; Chlorophyll a; Chlorophyll a, confidence value; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helgoland; Helgoland, North Sea; Helgoland-UWO; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; in situ data; JERICO; MarGate; MarGate underwater experimental area; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Observatory; Oxygen saturation; Oxygen saturation, confidence value; Salinity; Salinity, confidence value; Scientific diving; See further details: Metadata for the Helgoland underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Towards a joint European research infrastructure network for coastal observatories; Turbidity, confidence value; Turbidity (Formazin Turbidity Unit)
    Type: Dataset
    Format: text/tab-separated-values, 54042 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...