ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (15)
  • 1990-1994  (3)
  • 1
    Publication Date: 2023-09-12
    Description: Located on the Hellenic Arc, the Christiana‐Santorini‐Kolumbo (CSK) rift zone represents one of the most active and hazardous volcano‐tectonic systems in the Mediterranean. Although this rift zone has been intensively studied, its tectonic evolution and the interplay of volcanism and tectonism are still poorly understood. In this study, we use high‐resolution reflection seismic imagery to reconstruct the opening of the rift basins. For the first time, we relate the activity of individual faults with the activity of specific volcanic centers in space and time. Our analysis shows a pre‐volcanic NNE‐SSW‐oriented paleo basin underneath the CSK volcanoes, representing a transfer zone between Pliocene ESE‐WNW‐oriented basins, which was overprinted by a NE‐SW‐oriented tectonic regime hosting Late Pliocene volcanism that initiated at the Christiana Volcano. All subsequent volcanoes evolved parallel to this trend. Two major Pleistocene tectonic pulses preceded fundamental changes in the volcanism of the CSK rift including the occurrence of widespread small‐scale volcanic centers followed by focusing of activity at Santorini with increasing explosivity. The observed correlation between changes in the tectonic system and the magmatism of the CSK volcanoes suggests a deep‐seated tectonic control of the volcanic plumbing system. In turn, our analysis reveals the absence of large‐scale faults in basin segments affected by volcanism indicating a secondary feedback mechanism on the tectonic system. A comparison with the evolution of the neighboring Kos‐Nisyros‐Yali volcanic field zone and Rhodos highlights concurrent regional volcano‐tectonic changes, suggesting a potential arc‐wide scale of the observed volcano‐tectonic interplay.
    Description: Plain Language Summary: How do regional tectonic movements and large volcanoes interact? Seismological studies indicate complex volcano‐tectonic feedback links, but, so far, information on the long‐term interactions between tectonics and volcanism is rarely available. The Christiana‐Santorini‐Kolumbo (CSK) rift zone lies in the Aegean Sea and is notorious for its devastating volcanic eruptions, earthquakes, and tsunamis. This region offers the opportunity to study volcano‐tectonic interactions over several million years. In this study, we use high‐resolution seismic imagery to reconstruct the evolution of the rift basins and the CSK volcanoes. We find that all volcanoes lie in a Pliocene transfer zone connecting extensional basins. Volcanism initiated as this older tectonic regime was intersected by a NE‐SW‐directed fault system. Subsequently, all volcanoes evolved parallel to this trend. Several distinct tectonic reorganizations occurred in the Pleistocene, which had a pronounced influence on the CSK volcanoes. In turn, our analysis indicates that the emergence of volcanism also impacted the tectonic evolution of the rift system hindering the evolution of large‐scale normal faults in the volcanic basins. The observed tectonic reorganizations seem to reflect major changes in the stress regime of the Hellenic Arc, potentially also affecting adjacent volcanic centers whose volcano‐tectonic evolution is only poorly constrained so far.
    Description: Key Points: We reconstruct the volcano‐tectonic evolution of the Christiana‐Santorini‐Kolumbo rift zone using multichannel seismic data. The overprint of a Pleistocene NE‐SW striking fault system on a Pliocene E‐W oriented system initiated the emergence of volcanism. Regional tectonics had a primary control on the volcanic plumbing system, while magmatism had a secondary influence on the tectonic system.
    Description: German Research Foundation DFG
    Description: https://doi.org/10.26022/IEDA/331028
    Keywords: ddc:551.8 ; volcano‐tectonics ; Santorini ; rifting ; back‐arc ; Hellenic Arc ; Aegean Sea
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Overview on geochemical composition of pore water and solid phase of sediments on the Azores Plateau. • Evidence for deep marine hydrothermal activity on the Azores Plateau. • Pore water data suggest ongoing anaerobic oxidation of methane and carbonate recrystallization. The Azores Plateau is an active magmatic region in the Central North Atlantic Ocean. In this study, we present a comprehensive data set of major element compositions and 87Sr/86Sr ratios of pore waters from surface sediments (0–9 mbsf) of the Azores Plateau. Based on distinct geochemical signatures we can separate normal marine from hydrothermally affected sediments. Normal marine sediments can further be differentiated by their ash content. Pore waters of ash rich gravity cores (GCs) do not show any deviations from seawater values except of a minor increase in Sr. In contrast, ash poor GCs generally show a trend for decreasing Ca with increasing depth, accompanied by a minor SO4 decrease and a more pronounced Sr increase. We suggest that these deviations are caused by processes such as anaerobic oxidation of methane and carbonate recrystallization. At four additional sample locations we observed a decrease in Mg and SO4 accompanied by a Ca increase in the pore waters, a pattern typical for hydrothermal fluids. The existence of hydrothermal systems in this region are corroborated by multi-channel seismic data, suggesting that sill or dyke intrusions are present in the subsurface close to the core locations. Overall, our observations offer preliminary indications for the existence of submarine hydrothermal systems on the Azores Plateau away from the Mid- Atlantic Ridge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-08
    Description: With a maximum volume estimate of up to 86 km³ dense-rock equivalent (DRE), the Minoan Eruption is considered one of the largest Holocene eruptions. However, as most eruption products were deposited in the Mediterranean, previous volume estimates based on a limited database. We present new marine geophysical and sedimentological datasets allowing us to reassess the volume of the Minoan eruption in unprecedented detail. We combine high- resolution reflection seismic and P-wave tomography datasets with more than 40 marine sediment cores, constrained by X-ray computer-tomography (CT) scanning. The reflection seismic profiles indicate an ignimbrite volume of ~5.7 km³ DRE deposited on Santorini’s flanks, which is seven times smaller than previous estimates, while the P-wave tomography indicates ~5.5 km³ DRE of Minoan intra-caldera deposits, which is four times smaller than previous estimates. CT-guided analysis of the sediment cores allows us to differentiate two ash layers, which are separately integrated into ash deposit isopach maps and allows determine deposit porosities with high accurary. The combined ash volume of ~19.5 km³ DRE is in the same order as previous estimates. This yields a total eruption volume of ~31 km³ DRE. In addition, we use the new datasets to constrain the post-eruptive topography of the caldera and estimate the caldera collapse volume to be ~31.5 km³. The internal consistency of both independent approaches implies high confidence in our estimates, likely representing the most precise volume reconstruction of any major (M6.5+) volcanic eruption in the Holocene. Our analysis implies that the Minoan Eruption was smaller and produced significantly less ignimbrites than previous reconstructions indicated, while still causing a devastating tsunami. This highlights the significant tsunamigenic potential of submarine- emplaced ignimbrites
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Located on the Hellenic Arc, the Christiana-Santorini-Kolumbo (CSK) rift zone represents one of the most active and hazardous volcano-tectonic systems in the Mediterranean. Although this rift zone has been intensively studied, its tectonic evolution and the interplay of volcanism and tectonism are still poorly understood. In this study, we use high-resolution reflection seismic imagery to reconstruct the opening of the rift basins. For the first time, we relate the activity of individual faults with the activity of specific volcanic centers in space and time. Our analysis shows a pre-volcanic NNE-SSW-oriented paleo basin underneath the CSK volcanoes, representing a transfer zone between Pliocene ESE-WNW-oriented basins, which was overprinted by a NE-SW-oriented tectonic regime hosting Late Pliocene volcanism that initiated at the Christiana Volcano. All subsequent volcanoes evolved parallel to this trend. Two major Pleistocene tectonic pulses preceded fundamental changes in the volcanism of the CSK rift including the occurrence of widespread small-scale volcanic centers followed by focusing of activity at Santorini with increasing explosivity. The observed correlation between changes in the tectonic system and the magmatism of the CSK volcanoes suggests a deep-seated tectonic control of the volcanic plumbing system. In turn, our analysis reveals the absence of large-scale faults in basin segments affected by volcanism indicating a secondary feedback mechanism on the tectonic system. A comparison with the evolution of the neighboring Kos-Nisyros-Yali volcanic field zone and Rhodos highlights concurrent regional volcano-tectonic changes, suggesting a potential arc-wide scale of the observed volcano-tectonic interplay. Key Points We reconstruct the volcano-tectonic evolution of the Christiana-Santorini-Kolumbo rift zone using multichannel seismic data The overprint of a Pleistocene NE-SW striking fault system on a Pliocene E-W oriented system initiated the emergence of volcanism Regional tectonics had a primary control on the volcanic plumbing system, while magmatism had a secondary influence on the tectonic system
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The Christiana-Santorini-Kolumbo volcanic field (CSKVF) in the Aegean Sea is one of the most active volcano-tectonic lineaments in Europe. Santorini has been an iconic site in volcanology and archaeology since the 19th century, and the onshore volcanic products of Santorini are one of the best-studied volcanic sequences worldwide. However, little is known about the chronology of volcanic activity of the adjacent submarine Kolumbo volcano, and even less is known about the Christiana volcanic island. In this study, we exploit a dense array of high-resolution marine seismic reflection profiles to link the marine stratigraphy to onshore volcanic sequences and present the first consistent chronological framework for the CSKVF, enabling a detailed reconstruction of the evolution of the volcanic rift system in time and space. We identify four main phases of volcanic activity, which initiated in the Pliocene with the formation of the Christiana volcano (phase 1). The formation of the current southwest-northeast–trending rift system (phase 2) was associated with the evolution of two distinct volcanic centers, the newly discovered Poseidon center and the early Kolumbo volcano. Phase 3 saw a period of widespread volcanic activity throughout the entire rift. The ongoing phase 4 is confined to the Santorini caldera and Kolumbo volcano. Our study highlights the fundamental tectonic control on magma emplacement and shows that the CSKVF evolved from a volcanic field with local centers that matured only recently to form the vast Santorini edifice.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...