ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-04
    Description: This book is a collection of 19 articles which reflect the courses given at the Collège de France/Summer school “Reconstruction d'images − Applications astrophysiques“ held in Nice and Fréjus, France, from June 18 to 22, 2012. The articles presented in this volume address emerging concepts and methods that are useful in the complex process of improving our knowledge of the celestial objects, including Earth.
    Keywords: image reconstruction ; astrophysical applications ; thema EDItEUR::P Mathematics and Science::PH Physics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-29
    Description: The increasing complexity of work systems and changes in the nature of workplace technology over the past century have resulted in an exponential shift in the nature of work activities, from physical labor to cognitive work. Modern work systems have many characteristics that make them cognitively complex: They can be highly interactive; comprised of multiple agents and artifacts; information may be limited and distributed across space and time; task goals are frequently ill-defined, conflicting, dynamic and emergent; planning may only be possible at general levels of abstraction or require adaptive solutions; some degree of proficiency or expertise is required; the stakes are often high; and uncertainty, time-constraints and stress are seldom absent. To complicate matters further, cognition in complex work settings is typically constrained by broader professional, organizational, and institutional practice and policy. These features of cognitive work present significant challenges to scientific methodology and theory, and subsequent design of reliable interventions. Historically, philosophers and scientists have attempted to understand the mental activities experienced during cognitive work at multiple levels of analysis using divergent methods. Some have examined cognition at an associative, contextual, functional or holistic level, relying on naturalistic methods to understand the higher mental processes as they work in harmony during goal-directed behavior. Others have embraced experimental methods and favored internal over external validity, often reducing cognition to a psychology of fundamental acts, such as short-term memory access with millisecond shifts in attention. More recently, Macrocognition has evolved as a complementary paradigm. Macrocognitive researchers have studied the cognitive functions and processes associated with skilled, adaptive, collaborative, and resilient cognitive work in the context of the aforementioned complexities of psychotechnical and sociotechnical work systems. Typically, this research has been carried out using cognitive task analytic techniques that draw on both naturalistic and (quasi-)experimental methods. The primary goals of research in Macrocognition are to better understand cognitive adaptations to complexity, to increase our theoretical understanding of the organism-environment relations by studying the mapping between cognitive work and real-world demands, and to promote use-inspired research capable of improving system performance.
    Keywords: BF1-990 ; Q1-390 ; Adaptive thinking ; Cognition ; human performance ; Expertise ; Complexity ; bic Book Industry Communication::J Society & social sciences::JM Psychology ; thema EDItEUR::J Society and Social Sciences::JM Psychology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-12
    Description: Studies of host rock deformation around magmatic intrusions usually focus on the development of stresses directly related to the intrusion process. This is done either by considering an inflating region that represents the intruding body, or by considering multiphase deformation. Thermal processes, especially volume changes caused by thermal expansion are typically ignored. We show that thermal stresses around upper crustal magma bodies are likely to be significant and sufficient to create an extensive fracture network around the magma body by brittle yielding. At the same time, cooling induces decompression within the intrusion, which can promote the appearance of a volatile phase. Volatile phases and the development of a fracture network around the inclusion may thus be the processes that control magmatic‐hydrothermal alteration around intrusions. This suggests that thermal stresses likely play an important role in the development of magmatic systems. To quantify the magnitude of thermal stresses around cooling intrusions, we present a fully compressible 2D visco‐elasto‐plastic thermo‐mechanical numerical model. We utilize a finite difference staggered grid discretization and a graphics processing unit based pseudo‐transient solver. First, we present purely thermo‐elastic solutions, then we include the effects of viscous relaxation and plastic yielding. The dominant deformation mechanism in our models is determined in a self‐consistent manner, by taking into account stress, pressure, and temperature conditions. Using experimentally determined flow laws, the resulting thermal stresses can be comparable to or even exceed the confining pressure. This suggests that thermal stresses alone could result in the development of a fracture network around magmatic bodies.
    Description: Plain Language Summary: Quantifying the stresses that magma bodies exert on the surrounding rocks is an important part of understanding mechanical processes that control the evolution of magmatic systems and volcanic eruptions. Previous analytical or numerical models typically describe the mechanical response to changes in magma volume due to intrusion or extraction of magma. However, volume changes related to thermal expansion/contraction around a cooling magma body are often neglected. Here, we develop a new software which runs on modern graphics processing unit machines, to quantity the effect of this process. The results show that stresses due to thermal expansion/contraction are significant, and often large enough to fracture the rocks nearby the magma body. Such fracture networks may form permeable pathways for the magma or for fluids such as water and CO〈sub〉2〈/sub〉, thus influencing the evolution of magmatic and hydrothermal systems. Finally we show that cooling and shrinking of magma bodies causes significant decompression which can influence the chemical evolution of the magma during crystallization and devolatilization.
    Description: Key Points: We present a numerical quantification of the effect of thermal stresses in visco‐elasto‐plastic rock with tensile and dilatant shear failure. The pressure drop in thermally contracting upper crustal magma bodies can exceed 100 MPa, potentially triggering devolatilization. Thermal cracking can create an extensive fracture network around an upper crustal magma body.
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: https://zenodo.org/record/6958273
    Description: https://doi.org/10.5281/zenodo.6958273
    Keywords: ddc:551.8 ; magmatic intrusions ; host rock deformation ; thermal stress ; numerical quantification
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Version 5 (v05) of the thermospheric wind data from the Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) instrument on the Ionospheric Connection Explorer (ICON) mission has been recently released, which largely avoids local‐time dependent artificial baseline drifts that are found in previous versions of the ICON/MIGHTI wind data. This paper describes monthly climatologies of zonal‐mean winds and tides based on the v05 ICON/MIGHTI data under geomagnetically quiet conditions (Hp30 〈 3o) during April 2020–March 2022. Green‐line winds in the lower thermosphere (90–110 km) and red‐line winds in the middle thermosphere (200–300 km) are analyzed, as these data cover both daytime and nighttime. The latitude and height structures of zonal‐mean winds and tides are presented for each month, and the results are compared with the widely used empirical model, Horizontal Wind Model 2014 (HWM14). The ICON/MIGHTI and HWM14 results are in general agreement, providing a validation of the v05 ICON/MIGHTI data. The agreement is especially good for the zonal‐mean winds. Amplitudes of lower thermospheric tides from ICON/MIGHTI tend to be larger than those from HWM14 as well as from an empirical model, Climatological Tidal Model of the Thermosphere (CTMT). This could be due to the influence of interannual variability of the tides. The amplitude structure of lower thermospheric tides in HWM14 does not match those from ICON/MIGHTI and CTMT in some months. Also, HWM14 underestimates the meridional‐wind amplitude of the migrating diurnal tide in the middle thermosphere. These results highlight the need for improved tidal representation in HWM14.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Monthly climatologies of zonal‐mean winds and tides at 90–110 km and 200–300 km are determined using v05 Ionospheric Connection Explorer/Michelson Interferometer for Global High‐resolution Thermospheric Imaging (ICON/MIGHTI) observations〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉ICON/MIGHTI and Horizontal Wind Model 2014 results are in general agreement, providing a validation of the Version 5 ICON/MIGHTI data〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The agreement is especially good for the zonal‐mean winds, while some discrepancies are found in tidal amplitudes〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: NASA
    Description: https://icon.ssl.berkeley.edu/Data
    Description: https://kp.gfz-potsdam.de/en/hp30-hp60/data
    Description: https://doi.org/10.5880/Hpo.0002
    Description: https://spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-mavg-en.php
    Description: https://globaldynamics.sites.clemson.edu/articles/ctmt.html
    Description: https://doi.org/10.5281/zenodo.5541913
    Keywords: ddc:551.5 ; thermosphere ; zonal‐mean winds ; tides ; ionospheric connection explorer (ICON) ; MIGHTI ; HWM14
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...