ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-04
    Description: The availability of computer tools able to describe the behavior of pyroclastic density currents (PDCs) with uncertainty quantification is of primary importance for the assessment of volcanic hazard. A common strategy to assess the intrinsic variability of these phenomena is based on the analysis of large sets of numerical simulations with variable input parameters. The use of models fast enough to allow for a large number of simulations, such as the so-called kinetic energy models, is thus advantageous. Due to the sensitivity of kinetic energy models to poorly constrained input parameters, the definition of their variation ranges is a critical step in the construction of hazard maps and a numerical calibration becomes necessary. We present a set of reproducible and structured calibration procedures of numerical models based either on a reference deposit or on the distribution of runout distance or inundation area of documented PDCs. In the first case, various metrics can be adopted to compare the model results with the reference PDC deposit (root mean square distance, Hausdorff distance, and Jaccard index), facilitating the development of scenario-based hazard assessments. Calibrations based on the distribution of runout distance or inundation area allow the construction of probabilistic hazard maps that are not conditioned on the occurrence of a specific scenario, but rather reflect the variability of the documented PDCs during the time window considered. Importantly, our calibration strategies allow one to set the input parameters considering their potential statistical dependence. These procedures have been implemented on the user-friendly versions of two kinetic energy models: ECMapProb 2.0 and BoxMapProb 2.0, whose functionalities are presented for the first time in this paper. The different calibration strategies and the functionalities of the two programs are illustrated by considering three case studies: El Misti (Peru), Merapi (Indonesia), and Campi Flegrei (Italy).
    Description: Published
    Description: 29
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-16
    Description: Validation and benchmarking of pyroclastic current (PC) models is required to evaluate their performance and their reliability for hazard assessment. Here, we present results of a benchmarking initiative built to evaluate four models commonly used to assess concentrated PC hazard: SHALTOP, TITAN2D, VolcFlow, and IMEX_SfloW2D. The benchmark focuses on the simulation of channelized flows with similar source conditions over five different synthetic channel geometries: (1) a flat incline plane, (2) a channel with a sharp 45° bend, (3) a straight channel with a break-in-slope, (4) a straight channel with an obstacle, and (5) a straight channel with a constriction. Several outputs from 60 simulations using three different initial volume fluxes were investigated to evaluate the performance of the four models when simulating valley-confined PC kinematics, including overflows induced by topographic changes. Quantification of the differences obtained between model outputs at t = 100 s allowed us to identify (1) issues with the Voellmy-Salm implementation of TITAN2D and (2) small discrepancies between the three other codes that are either due to various curvature and velocity formulations and/or numerical frameworks. Benchmark results were also in agreement with field observations of natural PCs: a sudden change in channel geometries combined with a high-volume flux is key to generate overflows. The synthetic benchmarks proved to be useful for evaluating model performance, needed for PC hazard assessment. The overarching goal is to provide an interpretation framework for volcanic mass flow hazard assessment studies to the geoscience community.
    Description: Published
    Description: 75
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: benchmarking ; pyroclastic current ; numerical modeling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-14
    Description: Destructive tsunamis are most often generated by large earthquakes occurring at subduction interfaces, but also other “atypical” sources—defined as crustal earthquakes and non-seismic sources altogether—may cause significant tsunami threats. Tsunamis may indeed be generated by different sources, such as earthquakes, submarine or coastal landslides, volcano-related phenomena, and atmospheric perturbations. The consideration of atypical sources is important worldwide, but it is especially prominent in complex tectonic settings such as the Mediterranean, the Caribbean, or the Indonesian archipelago. The recent disasters in Indonesia in 2018, caused by the Palu-Sulawesi magnitude Mw 7.5 crustal earthquake and by the collapse of the Anak-Krakatau volcano, recall the importance of such sources. Dealing with atypical sources represents a scientific, technical, and computational challenge, which depends on the capability of quantifying and managing uncertainty efficiently and of reducing it with accurate physical modelling. Here, we first introduce the general framework in which tsunami threats are treated, and then we review the current status and the expected future development of tsunami hazard quantifications and of the tsunami warning systems in Italy, with a specific focus on the treatment of atypical sources. In Italy, where the memory of historical atypical events like the 1908 Messina earthquake or the relatively recent 2002 Stromboli tsunami is still vivid, specific attention has been indeed dedicated to the progressive development of innovative strategies to deal with such atypical sources. More specifically, we review the (national) hazard analyses and their application for coastal planning, as well as the two operating tsunami warning systems: the national warning system for seismically generated tsunamis (SiAM), whose upstream component—the CAT-INGV—is also a Tsunami Service Provider of the North-eastern Atlantic, the Mediterranean and connected seas Tsunami Warning System (NEAMTWS) coordinated by the Intergovernmental Coordination Group established by the Intergovernmental Oceanographic Commission (IOC) of UNESCO, and the local warning system for tsunamis generated by volcanic slides along the Sciara del Fuoco of Stromboli volcano. Finally, we review the state of knowledge about other potential tsunami sources that may generate significant tsunamis for the Italian coasts, but that are not presently considered in existing tsunami warning systems. This may be considered the first step towards their inclusion in the national tsunami hazard and warning programs.
    Description: Published
    Description: 69–144
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-15
    Description: We present a benchmark study aimed at identifying the most effective modeling approach for tsunami generation, propagation, and hazard in an active volcanic context, such as the island of Stromboli (Italy). We take as a reference scenario the 2002 landslide-generated tsunami event at Stromboli simulated to assess the relative sensitivity of numerical predictions to the landslide and the wave models, with our analysis limited to the submarine landslide case. Two numerical codes, at different levels of approximation, have been compared in this study: the NHWAVE three-dimensional non-hydrostaticmodel in sigma-coordinates and theMultilayer-HySEA model. In particular, different instances of Multilayer-HySEA with one or more vertical discretization layers, in hydrostatic and non-hydrostatic formulation and with different landslide models have been tested. Model results have been compared for the maximum runup along the shores of Stromboli village, and the waveform sampled at four proximal sites (two of them corresponding to the locations of the monitoring gauges, offshore the Sciara del Fuoco). Both rigid and deformable (granular) submarine landslide models, with volumes ranging from 7 to 25 million of cubic meters, have been used to trigger the water waves, with different physical descriptions of the mass movement. Close to the source, the maximum surface elevation and the resulting runup at the Stromboli village shores obtainedwith hydrostatic and non-hydrostaticmodels are similar. However, hydrostatic models overestimate (with respect to non-hydrostatic ones) the amplitude of the initial positive wave crest, whose height increases with the distance. Moreover, as expected, results indicate significant differences between the waveforms produced by the different models at proximal locations. The accuratemodeling of near-field waveforms is particularly critical at Stromboli in the perspective of using the installed proximal sea-level gauges, together with numerical simulations, to characterize tsunami source in an early-warning system. We show that the use of non-hydrostatic models, coupled with a multilayer approach, allows a better description of the waveforms. However, the source description remains the most sensitive (and uncertain) aspect of the modeling. We finally show that non-hydrostatic models, such as Multilayer-HySEA, solved on accelerated GPU architectures, exhibit the optimal trade-off between accuracy and computational requirements, at least for the envisaged problem size and for what concerns the proximal wave field of tsunamis generated by volcano landslides. Their application and future developments are opening new avenues to tsunami early warning at Stromboli.
    Description: Published
    Description: 628652
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: landslide ; tsunami ; volcano ; Stromboli ; numerical simulation ; benchmark ; hazard assessment ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-15
    Description: Understanding explosive eruption dynamics and assessment of their hazards continue to represent challenging issues to the present-day volcanology community. This is largely due to the complex and diverse nature of the phenomena, the variability and unpredictability of volcanic processes, and the difficulty of measuring them in the field and fully reproducing them at the laboratory scale. Nevertheless, important and continuing progress has been made in the last few decades in understanding the fundamental processes and forecasting the occurrences of these phenomena, thanks to significant advances in field, experimental, and theoretical modeling investigations. For more than four decades, for example, volcanologists have made major progress in the description of the nature of explosive eruptions, considerably aided by the development, improvement, and application of physical-mathematical models. First, integral steady-state homogeneous flow models were used to investigate the different controlling mechanisms and to infer the genesis and evolution of the phenomena. Through continuous improvements and quantum-leap developments, a variety of transient one/multi-dimensional multiphase flow models of volcanic phenomena now can implement state-of-the-art formulations of the underlying physics, new-generation analytical and experimental data, as well as high-performance computational techniques. These numerical models have proved to be able to provide key insights in the understanding of the dynamics of explosive eruptions (e.g., volcanic jets and blasts, convective plumes, collapsing columns, pyroclastic density currents, short-lived explosions, ballistic ejecta, etc., just to limit the phenomena to the atmospheric domain), as well as to represent a valuable tool in the quantification of potential eruptive scenarios and associated hazards.
    Description: Published
    Description: 243-281
    Description: 5V. Processi eruttivi e post-eruttivi
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-22
    Description: Future occurrence of explosive eruptive activity at Cotopaxi and Guagua Pichincha volcanoes, Ecuador, is assessed probabilistically, utilizing expert elicitation. Eight eruption types were considered for each volcano. Type event probabilities were evaluated for the next eruption at each volcano and for at least one of each type within the next 100 years. For each type, we elicited relevant eruption source parameters (duration, average plume height, and total tephra mass). We investigated the robustness of these elicited evaluations by deriving probability uncertainties using three expert scoring methods. For Cotopaxi, we considered both rhyolitic and andesitic magmas. Elicitation findings indicate that the most probable next eruption type is an andesitic hydrovolcanic/ash-emission (~ 26–44% median probability), which has also the highest median probability of recurring over the next 100 years. However, for the next eruption at Cotopaxi, the average joint probabilities for sub-Plinian or Plinian type eruption is of order 30–40%—a significant chance of a violent explosive event. It is inferred that any Cotopaxi rhyolitic eruption could involve a longer duration and greater erupted mass than an andesitic event, likely producing a prolonged emergency. For Guagua Pichincha, future eruption types are expected to be andesitic/dacitic, and a vulcanian event is judged most probable for the next eruption (median probability ~40–55%); this type is expected to be most frequent over the next 100 years, too. However, there is a substantial probability (possibly 〉40% in average) that the next eruption could be sub-Plinian or Plinian, with all that implies for hazard levels.
    Description: Published
    Description: 35
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-12-17
    Description: Uncertainty quantification of the model – definition of mean under/overestimation coefficientes of the model Uncertainty quantification for the probability of occurrence of different eruption types for the range of eruptive source parameters – expert elicitation session Hazard maps produced for sub-plinian and plinian eruptions considered separately and together Cotopaxi (4 eruption types) Guagua Pichincha (2 eruption types) Two map types: for a given tephra accumulation threshold and different probabilities for a given probabilité donnée et différents seuils d'accumulation de téphra Three maps (« lower », « natural » et « upper ») that quantify the different sources of uncertainty Quito : hazard curves defined for 10 sensitive sites
    Description: Published
    Description: Online conference
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Quito ; fallout hazard
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-11-25
    Description: In 2019, Stromboli volcano experienced one of the most violent eruptive crises in the last hundred years. Two paroxysmal explosions interrupted the 'normal' mild explosive activity during the tourist season. Here we integrate visual and field observations, textural and chemical data of eruptive products, and numerical simulations to analyze the eruptive patterns leading to the paroxysmal explosions. Heralded by 24 days of intensified normal activity and 45 min of lava outpouring, on 3 July a paroxysm ejected ~6 × 107 kg of bombs, lapilli and ash up to 6 km high, damaging the monitoring network and falling towards SW on the inhabited areas. Intensified activity continued until the less energetic, 28 August paroxysm, which dispersed tephra mainly towards NE. We argue that all paroxysms at Stromboli share a common pre-eruptive weeks-to months-long unrest phase, marking the perturbation of the magmatic system. Our analysis points to an urgent implementation of volcanic monitoring at Stromboli to detect such long-term precursors.
    Description: INGV–Progetti Strategici Dipartimentali 2019, Project ‘UNO: UNderstanding the Ordinary to forecast the extraordinary: an integrated approach for studying and interpreting the explosive activity at Stromboli volcano’ MIUR-PRIN 2017, Project ‘Time scales of solidification in magmas: applications to volcanic eruptions, silicate melts, glasses, glass-ceramics’.
    Description: Published
    Description: 4213
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-11
    Description: In this paper, we present a new version of PLUME-MoM, a 1-D integral volcanic plume model based on the method of moments for the description of the polydispersity in solid particles. The model describes the steady-state dynamics of a plume in a 3-D coordinate system, and a modification of the two-size moment (TSM) method is adopted to describe changes in grain size distribution along the plume, associated with particle loss from plume margins and with particle aggregation. For this reason, the new version is named PLUME-MoM-TSM. For the first time in a plume model, the full Smoluchowski coagulation equation is solved, allowing us to quantify the formation of aggregates during the rise of the plume. In addition, PLUME-MOM-TSM allows us to model the phase change of water, which can be either magmatic, added at the vent as liquid from external sources, or incorporated through ingestion of moist atmospheric air. Finally, the code includes the possibility to simulate the initial spreading of the umbrella cloud intruding from the volcanic column into the atmosphere. A transient shallow-water system of equations models the intrusive gravity current, allowing computation of the upwind spreading. The new model is applied first to the eruption of the Calbuco volcano in southern Chile in April 2015 and then to a sensitivity analysis of the upwind spreading of the umbrella cloud to mass flow rate and meteorological conditions (wind speed and humidity). This analysis provides an analytical relationship between the upwind spreading and some observable characteristic of the volcanic column (height of the neutral buoyancy level and plume bending), which can be used to better link plume models and volcanic-ash transport and dispersion models.
    Description: Italian Department of Civil Protection (grant no. INGV-DPC agreement A 2020), the Italian MIUR (grant no. project Premiale Ash-RESILIENCE), the MIUR (FISR project “Sale Operative Integrate e Reti di Monitoraggio del Futuro”), and the EU (EUROVOLC (grant no. 731070)).
    Description: Published
    Description: 1345–1377
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: volcanic plume ; numerical model ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-14
    Description: Shallow water equations are widely used in the simulation of those geophysical flows for which the flow horizontal length scale is much greater than the vertical one. Inspired by the example of lava flows, we consider here a modified model with an additional transport equation for a scalar quantity (e.g., temperature), and the derivation of the shallow water equations from depth-averaging the Navier-Stokes equations is presented. The assumption of constant vertical profiles for some of the model variables is relaxed allowing the presence of vertical profiles, and it follows that the non-linearity of the flux terms results in the introduction of appropriate shape coefficients. The space discretization of the resulting system of hyperbolic partial differential equations is obtained with a modified version of the finite volume central-upwind scheme introduced by Kurganov and Petrova in 2007. The time discretization is based on an implicit-explicit Runge-Kutta method which couples properly the hyperbolic part and the stiff source terms, avoiding the use of a very small time step; the use of complex arithmetic increases accuracy in the implicit treatment of stiff terms. The whole scheme is proved to preserve the positivity of flow thickness and the stationary steady-states. Some numerical experiments are performed to validate the proposed method and to show the incidence on the numerical solutions of shape coefficients introduced in the model.
    Description: Published
    Description: 482-505
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Shallow water equations ; Viscous fluids ; Finite Volume ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...