ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-09-27
    Description: Titanite is a potentially powerful U–Pb petrochronometer that may record metamorphism, metasomatism, and deformation. Titanite may also incorporate significant inherited Pb, which may lead to inaccurate and geologically ambiguous U–Pb dates if a proper correction is not or cannot be applied. Here, we present laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS)‐derived titanite U–Pb dates and trace element concentrations for two banded calcsilicate gneisses from south‐central Maine, USA (SSP18‐1A and SSP18‐1B). Single spot common Pb‐corrected dates range from 400 to 280 Ma with ±12–20 Ma propagated 2SE. Titanite grains in sample SSP18‐1B exhibit regular core‐to‐rim variations in texture, composition, and date. We identify four titanite populations: (1) 397 ± 5 Ma (95% CL) low Y + HREE cores and mottled grains, (2) 370 ± 7 Ma high Y + REE mantles and cores, (3) 342 ± 6 Ma cores with high Y + REE and no Eu anomaly, and (4) 295 ± 6 Ma LREE‐depleted rims. We interpret the increase in titanite Y + HREE between ca. 397 and ca. 370 Ma to constrain the timing of diopside fracturing and recrystallization and amphibole breakdown. Apparent Zr‐in‐titanite temperatures (803 ± 36°C at 0.5 ± 0.2 GPa) and increased XDi suggest a thermal maximum at ca. 370 Ma. Population 3 domains dated to ca. 342 Ma exhibit no Eu anomaly and are observed only in compositional bands dominated by diopside (〉80 vol%), suggesting limited equilibrium between titanite and plagioclase. Finally, low LREE and high U/Th in Population 4 titanite dates the formation of hydrous phases, such as allanite, during high XH2O fluid infiltration at ca. 295 Ma. In contrast to the well‐defined date–composition–texture relationships observed for titanite from SSP18‐1B, titanite grains from sample SSP18‐1A exhibit complex zoning patterns and little correlation between texture, composition, and date. We hypothesize that the incorporation of variable amounts of radiogenic Pb from dissolved titanite into recrystallized domains resulted in mixed dates spanning 380–330 Ma. Although titanite may reliably record multiple phases of metamorphism, these data highlight the importance of considering U–Pb data along with chemical and textural data to screen for inherited radiogenic Pb.
    Description: The University of Maine
    Description: US‐DE Fulbright Komission
    Keywords: ddc:552.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), [year]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walters, J. B., Cruz-Uribe, A. M., & Marschall, H. R. Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation. Geochemical Perspectives Letters, 13, (2020): 36-41, doi:10.7185/geochemlet.2011.
    Description: Oxygen fugacity (fO2) is a controlling factor of the physics of Earth’s mantle; however, the mechanisms driving spatial and secular changes in fO2 associated with convergent margins are highly debated. We present new thermodynamic models and petrographic observations to predict that oxidised sulfur species are produced during the subduction of altered oceanic crust. Sulfur loss from the subducting slab is a function of the protolith Fe3+/ΣFe ratio and subduction zone thermal structure, with elevated sulfur fluxes predicted for oxidised slabs in cold subduction zones. We also predict bi-modal release of sulfur-bearing fluids, with a low volume shallow flux of reduced sulfur followed by an enhanced deep flux of sulfate and sulfite species, consistent with oxidised arc magmas and associated copper porphyry deposits. The variable SOx release predicted by our models both across and among active margins may introduce fO2 heterogeneity to the upper mantle.
    Description: We thank James Connolly for modelling support and Peter van Keken for providing updated P–T paths for the Syracuse et al. (2010) models. The manuscript benefited from the editorial handling by Helen Williams and from constructive reviews of Maryjo Brounce, Katy Evans, and an anonymous reviewer. JBW acknowledges Fulbright and Chase Distinguished Research fellowships. This work was supported by NSF grant EAR1725301 awarded to AMC.
    Keywords: Redox ; Sulfur ; Sulfur cycle ; Subduction ; Mantle ; Oxygen fugacity ; Arc
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...