ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (6)
Collection
Keywords
Publisher
Language
Years
Year
  • 1
    Publication Date: 2021-12-22
    Description: Future occurrence of explosive eruptive activity at Cotopaxi and Guagua Pichincha volcanoes, Ecuador, is assessed probabilistically, utilizing expert elicitation. Eight eruption types were considered for each volcano. Type event probabilities were evaluated for the next eruption at each volcano and for at least one of each type within the next 100 years. For each type, we elicited relevant eruption source parameters (duration, average plume height, and total tephra mass). We investigated the robustness of these elicited evaluations by deriving probability uncertainties using three expert scoring methods. For Cotopaxi, we considered both rhyolitic and andesitic magmas. Elicitation findings indicate that the most probable next eruption type is an andesitic hydrovolcanic/ash-emission (~ 26–44% median probability), which has also the highest median probability of recurring over the next 100 years. However, for the next eruption at Cotopaxi, the average joint probabilities for sub-Plinian or Plinian type eruption is of order 30–40%—a significant chance of a violent explosive event. It is inferred that any Cotopaxi rhyolitic eruption could involve a longer duration and greater erupted mass than an andesitic event, likely producing a prolonged emergency. For Guagua Pichincha, future eruption types are expected to be andesitic/dacitic, and a vulcanian event is judged most probable for the next eruption (median probability ~40–55%); this type is expected to be most frequent over the next 100 years, too. However, there is a substantial probability (possibly 〉40% in average) that the next eruption could be sub-Plinian or Plinian, with all that implies for hazard levels.
    Description: Published
    Description: 35
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-17
    Description: Uncertainty quantification of the model – definition of mean under/overestimation coefficientes of the model Uncertainty quantification for the probability of occurrence of different eruption types for the range of eruptive source parameters – expert elicitation session Hazard maps produced for sub-plinian and plinian eruptions considered separately and together Cotopaxi (4 eruption types) Guagua Pichincha (2 eruption types) Two map types: for a given tephra accumulation threshold and different probabilities for a given probabilité donnée et différents seuils d'accumulation de téphra Three maps (« lower », « natural » et « upper ») that quantify the different sources of uncertainty Quito : hazard curves defined for 10 sensitive sites
    Description: Published
    Description: Online conference
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Quito ; fallout hazard
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-18
    Description: Formalised elicitation of expert judgements has been used in recent years to help tackle several problematic societal issues, including volcanic crises and pandemic threats. We present an expert elicitation exercise for Piton de la Fournaise volcano, La Réunion island, held remotely in April 2021. This involved twenty-eight experts from nine countries who considered a hypothetical effusive eruption crisis involving a new vent opening in a high-risk area. The tele-elicitation presented several challenges, but is a promising and workable option for application to future volcanic crises. Our exercise considered an “uncommon” eruptive scenario with a vent outside the present caldera and within inhabited areas, and provided uncertainty ranges for several hazard-related questions for such a scenario (e.g. probability of eruption within a defined timeframe; elapsed time until lava flow reaches a critical location, and other hazard management issues). Our exercise indicated that such a scenario would probably present very different characteristics than the eruptions observed in recent decades, and that it is fundamental to include well prepared expert elicitations in updated civil protection evacuation plans to improve disaster response procedures.
    Description: Published
    Description: 105-131
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: N/A or not JCR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-21
    Description: One of the most challenging issues in Mediterranean ecosystems to date has been to understand the emergence of discontinuous changes or catastrophic shifts. In the era of the 2030 Sustainable Development Goals, which encompass ideas around Land Degradation Neutrality, advancing this understanding has become even more critical and urgent. The aim of this paper is to synthesize insights into the drivers, processes and management of catastrophic shifts to highlight ways forward for the management of Mediterranean ecosystems. We use a multidisciplinary approach that extends beyond the typical single site, single scale, single approach studies in the current literature. We link applied and theoretical ecology at multiple scales with analyses and modeling of human–environment–climate relations and stakeholder engagement in six field sites in Mediterranean ecosystems to address three key questions: i) How do major degradation drivers affect ecosystem functioning and services in Mediterranean ecosystems? ii) What processes happen in the soil and vegetation during a catastrophic shift? iii) How can management of vulnerable ecosystems be optimized using these findings? Drawing together the findings from the use of different approaches allows us to address the whole pipeline of changes from drivers through to action. We highlight ways to assess ecosystem vulnerability that can help to prevent ecosystem shifts to undesirable states; identify cost-effective management measures that align with the vision and plans of land users; and evaluate the timing of these measures to enable optimization of their application before thresholds are reached. Such a multidisciplinary approach enables improved identification of early warning signals for discontinuous changes informing more timely and cost-effective management, allowing anticipation of, adaptation to, or even prevention of, undesirable catastrophic ecosystem shifts.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Description: We derive and solve a linear stochastic model for the evolution of discharge and runoff in an order-one watershed. The system is forced by a statistically stationary compound Poisson process of instantaneous rainfall events. The relevant time scales are hourly or larger, and for large times, we show that the discharge approaches a limiting invariant distribution. Hence any of its properties are with regard to a rainfall-runoff system in hydrological equilibrium. We give an explicit formula for the Laplace transform of the invariant density of discharge in terms of the catchment area, the residence times of water in the channel and the hillslopes, and the mean frequency and the probability distribution of rainfall inputs. As a study case, we consider a watershed under a stationary rainfall regime in the tropical Andes of Colombia and test the probability distribution predicted by the model against the corresponding seasonal statistics. A mathematical analysis of the invariant distribution is performed yielding formulas for the invariant moments of discharge in terms of those of the rainfall. The asymptotic behavior of the probabilities of extreme discharge events is explicitly derived for heavy-tailed and light-tailed families of distributions of rainfall inputs. The scaling structure of discharge is asymptotically characterized in terms of the parameters of the model and under the assumption of wide sense scaling for the precipitation amounts and the inverse of the residence time in the channel. Our results give insights into the conversion of uncertainty inherent to the rainfall-runoff dynamics and the roles played by different geophysical variables, with the ratio between the mean frequency of rainfall events to the residence time along the hillslopes largely determining the qualitative properties of the distribution of discharge.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-18
    Description: Efforts have been made in the past to enhance building exposure models on a regional scale with increasing spatial resolutions by integrating different data sources. This work follows a similar path and focuses on the downscaling of the existing SARA exposure model that was proposed for the residential building stock of the communes of Valparaíso and Viña del Mar (Chile). Although this model allowed great progress in harmonising building classes and characterising their differential physical vulnerabilities, it is now outdated, and in any case, it is spatially aggregated over large administrative units. Hence, to more accurately consider the impact of future earthquakes on these cities, it is necessary to employ more reliable exposure models. For such a purpose, we propose updating this existing model through a Bayesian approach by integrating ancillary data that has been made increasingly available from Volunteering Geo-Information (VGI) activities. Its spatial representation is also optimised in higher resolution aggregation units that avoid the inconvenience of having incomplete building-by-building footprints. A worst-case earthquake scenario is presented to calculate direct economic losses and highlight the degree of uncertainty imposed by exposure models in comparison with other parameters used to generate the seismic ground motions within a sensitivity analysis. This example study shows the great potential of using increasingly available VGI to update worldwide building exposure models as well as its importance in scenario-based seismic risk assessment.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...