ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-04-19
    Description: The late Pleistocene Yedoma Ice Complex is an ice-rich and organic-bearing type of permafrost deposit widely distributed across Beringia and is assumed to be especially prone to deep degradation with warming temperature, which is a potential tipping point of the climate system. To better understand Yedoma formation, its local characteristics, and its regional sedimentological composition, we compiled the grain-size distributions (GSDs) of 771 samples from 23 Yedoma locations across the Arctic; samples from sites located close together were pooled to form 17 study sites. In addition, we studied 160 samples from three non-Yedoma ice-wedge polygon and floodplain sites for the comparison of Yedoma samples with Holocene depositional environments. The multimodal GSDs indicate that a variety of sediment production, transport, and depositional processes were involved in Yedoma formation. To disentangle these processes, a robust endmember modeling analysis (rEMMA) was performed. Nine robust grain-size endmembers (rEMs) characterize Yedoma deposits across Beringia. The study sites of Yedoma deposits were finally classified using cluster analysis. The resulting four clusters consisted of two to five sites that are distributed randomly across northeastern Siberia and Alaska, suggesting that the differences are associated with rather local conditions. In contrast to prior studies suggesting a largely aeolian contribution to Yedoma sedimentation, the wide range of rEMs indicates that aeolian sedimentation processes cannot explain the entire variability found in GSDs of Yedoma deposits. Instead, Yedoma sedimentation is controlled by local conditions such as source rocks and weathering processes, nearby paleotopography, and diverse sediment transport processes. Our findings support the hypothesis of a polygenetic Yedoma origin involving alluvial, fluvial, and niveo-aeolian transport; accumulation in ponding waters; and in situ frost weathering as well as postdepositional processes of solifluction, cryoturbation, and pedogenesis. The characteristic rEM composition of the Yedoma clusters will help to improve how grain-size-dependent parameters in permafrost models and soil carbon budgets are considered. Our results show the characteristic properties of ice-rich Yedoma deposits in the terrestrial Arctic. Characterizing and quantifying site-specific past depositional processes is crucial for elucidating and understanding the trajectories of this unique kind of ice-rich permafrost in a warmer future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-11
    Description: As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modelling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the centre of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice‐bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon was ice‐grounded in spring. In bedfast ice areas, the electrical resistivity profiles suggest that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modelling suggests thermokarst lake taliks refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 °C. This occurs, because the top‐down chemical degradation of newly formed ice‐bearing permafrost is slower than the cooling of the talik. Hence, lagoons may pre‐condition taliks with a layer of ice‐bearing permafrost before encroachment by the sea and this frozen layer may act as a cap on gas migration out of the underlying talik.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-11
    Description: Subsea permafrost forms when sea level rise from deglaciation or coastal erosion results in inundation of terrestrial permafrost. The response of permafrost to flooding in these settings will be determined by both ice-rich Pleistocene deposits and the thermokarst basins that thawed out during the Holocene. Thermokarst processes lower ground ice content, create partially drained and refrozen depressions (Alases) and thaw bulbs (taliks) beneath them, warm the ground, and can thaw the ground below sea level. We hypothesize that inundated Alases offshore with relatively lower ice content and higher porewater salinities in their sediments (possibly resulting from lagoon interaction) thaw faster than Yedoma terrain. To test this hypothesis, we estimated permafrost thaw rates offshore of the Bykovsky Peninsula in Tiksi Bay, northeastern Siberia using geoelectric surveys with floating electrodes. The surveys traversed a former undrained lagoon, drained and refrozen Alas deposits, and undisturbed Yedoma terrain at varying distances from shore. A continuous Yedoma-Alas-beach-lagoon survey was also carried out to obtain an indication of pre-inundation subsurface electrical resistivity. While the estimated degradation rates of the submerged Yedoma lies in the range of similar sites, and slows with increasing distance offshore, the Alas rates were more diverse and at least twice as fast within 125 m of the coastline. The latter is possibly due to saline lagoon water that infiltrated the Alas while it was still unfrozen. The ice-bearing permafrost depths of the former lagoon were generally the deepest of the terrain units, but displayed poor correlation with distance offshore. We attribute this to heterogeneous talik thickness upon the lagoon to sea transition, as well as permafrost aggradation processes beneath the spit. Given the prevalence of thermokarst basins and lakes along parts of the Arctic coastline, their effect on subsea permafrost degradation must be similarly prevalent. Remote sensing analyses suggest that 40% of lagoons wider than 500 m originated in thermokarst basins along the pan-Arctic coast. The more rapid degradation rates shown here suggest that low-ice content conduits for fluid flow may be more common than currently thought based on thermal modelling of subsea permafrost distribution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-11
    Description: Warming of the Arctic triggers deep permafrost thaw, which has a strong impact on permafrost organic carbon (OC) storage. To identify the sedimentation history and organic matter (OM) characteristics of thermokarst-affected permafrost landscapes, we carried out an expedition in spring 2017 to the Bykovsky Peninsula. This is a remnant of a late Pleistocene accumulation plain on the Laptev Sea coast, northeastern Siberia. We retrieved a 31-m-long sediment core from underneath a thermokarst lake (water depth: 5.1 m) and analyzed the sediments for n-alkanes, total organic carbon content (TOC) and grain size. From the bottom upwards, the core contained 3 m of frozen sediments from underneath the thaw bulb (Unit I: 36.6-33 m), 25 m of unfrozen Yedoma (taberal) sediments (Unit II: 33-18 m, Unit III: 18-10 m) and 4 m of unfrozen lake sediments (Unit IV: 10-5.1 m). Unit I contained coarsest sediments and rounded pebbles, which point to a strong fluvial influence. Here, we found the highest TOC values (17.8 wt%) and drift wood (organic remains up to 4 cm in size). The dominant mid-chains n-alkanes n-C23 and n-C25 and a high aquatic plant n-alkane proxy Paq (median: 0.65) suggest the growth of submerged/floating macrophytes. With a value of 2.2, the odd-over-even predominance (OEP) is lowest in Unit I. Unit II has a lower relative distribution of the midchain n-alkanes, which suggests the vegetation was likely emergent rather than submerged (median Paq: 0.44). This indicates the onset of Yedoma formation and low-centered polygon development. In the finer sediments of Unit III, the Paq further decreases (median: 0.32) and n-C31 becomes more important, indicating the transition to a drier, grass dominated environment. The thermokarst lake (Unit IV) formed about 8 cal ka BP, indicated by a peat layer. The OM in Unit IV is fresh (median OEP: 8.4) and has the highest n-alkane concentration (20.8 µg g-1 sediment). In this study, we show that thermokarst formation has a potential of mobilizing a large OC pool to tens of meters deep: even though the OM in the sediments below the thaw bulb is furthest degraded, still a substantial amount of OC is stored here. The study of n-alkanes is very useful in identifying OM source and degradability and will help to improve OM mobilization estimates in thawing permafrost by investigating the molecular lipid structure.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC326th UN Climate Change Conference of the Parties (COP26), Glasgow, Scotland, 2021-10-31-2021-11-12
    Publication Date: 2022-03-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-11
    Description: Greenhouse gas (GHG) emissions from abrupt thaw beneath thermokarst lakes were projected to at least double radiative forcing from circumpolar permafrost-soil carbon fluxes by the end of this century, primarily through the release of methane, a much stronger GHG than CO2. Thermokarst lagoons represent the first stage of a thermokarst lake transition to a marine setting with so far neglected consequences for GHG production and release. We expected that along the transition from a thermokarst lake to a thermokarst lagoon, sediment concentrations of terminal electron acceptors like sulfate increase with an associated drop in methanogenic activity, a shift towards non-competitive methylotrophic methanogenesis, and the occurrence of sulfate-driven anaerobic methane oxidation (AOM). To explore this, we targeted a variety of geochemical and microbial parameters including sediment methane and CO2 concentrations, gaseous carbon isotopic signatures, hydrochemistry, GHG production rates, ratios of CH4/CO2, and occurrence of methane-cycling microbial taxa in sediments of two thermokarst lakes and a thermokarst lagoon on the Bykovsky Peninsula located in northeastern Siberia adjacent to Tiksi Bay. We found multiple lines of evidence that AOM in sediment layers influenced by Tiksi Bay water (i.e. the lagoon) functions as effective microbial methane filter. Annually, the lagoon is decoupled from Tiksi Bay for more than six months, resulting in more saline conditions below the ice cover compared to Tiksi Bay. Despite sub-zero near-surface sediment temperatures for approximately nine months per year, we show that, at least in early spring, AOM led to near-surface sediment methane concentrations approximating only about 1% of those measured in near-surface thermokarst lake sediments. Structural equation modelling stresses pore-water chemistry and increases in anaerobic methanotrophic abundance as main controls for the drop of in-situ methane concentrations and the corresponding increase in carbon isotopic signature. Shallow sediment layers (i.e. younger carbon) corresponded with higher rates of potential methane production, especially in the non-lagoon settings but even in the lagoon, potential methane production rates in the surface sediment layers were relatively unaffected by the marine influence. We propose that this reflects the overall dominance of non-competitive methylotrophic methanogenesis independent of pore-water chemistry and sediment depth. Overall, our study suggests that thermokarst lake to lagoon transitions have the potential to offset atmospheric methane fluxes from abrupt thaw lake structures long before thermokarst lakes fully transgress onto the Arctic shelf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3International Workshop, Geophysics in Environmental Studies 2021 (European Association of Geoscientists and Engineers (EAGE)), Gelendzhik, Russia & online, 2021-04-27-2021-04-27
    Publication Date: 2022-03-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Melnikov Permafrost Institute (MPI)
    In:  EPIC3Russian Conference with International Participation on the Occasion of the 60th Anniversary of the Melnikov Permafrost Institute (MPI), Yakutsk, Russia, 2020-09-28-2020-09-30Yakutsk, Russia, Melnikov Permafrost Institute (MPI)
    Publication Date: 2022-03-11
    Description: The late Pleistocene ice-rich Yedoma permafrost is extremely sensitive to Arctic warming. Warming air temperatures, decreasing sea ice extent lead to an increasing degradation of the Yedoma permafrost and thus to a greater sediment input from coastal shorelines and river floodplains to the Laptev Sea. Thus, so far freeze-locked sediments and any potentially hazardous contaminants contained in them are entering Arctic waters and the biological food chain. Shallow (down to 〈2m) Arctic permafrost soil layers were found to include high levels of mercury (Hg) due to natural enrichment processes of environmentally available Hg (Schuster et al. 2018). However, opposed to seasonal thaw processes of the active layer and long-term gradual thaw through active layer deepening, abrupt thaw processes such as thermokarst, thermo-erosion, and coastal erosion are capable of mobilising permafrost-soils and stored contaminants from tens of meters depth within years to decades. In this study, we determined Hg concentrations from various deposits in Siberia’s deep permafrost sediments. We studied links between sediment properties and Hg enrichment in order to assess a first deep Hg inventory in late Pleistocene permafrost down to 36 m below surface. To do this, we used sediment profiles from seven sites representing different permafrost degradation states on Bykovsky Peninsula (northern Yakutian coast) and in the Yukechi Alas region (Central Yakutia). We analysed 41 samples for Hg content, total carbon, total nitrogen and organic carbon as well as grain size distribution, bulk density and mass specific magnetic susceptibility. Figure 1: (a) geographical overview and detailed location of the study site at Bykovsky Peninsula (b) and Yukechi Alas in Yakutia (c); (d) stratigraphical transect of the study sites and different states of degrading permafrost in Siberia. The numbers indicate the areas of interest in this study. 1) Talik in Yedoma (unfrozen), 2) late Pleistocene Yedoma (frozen), 3) talik in thermokarst (unfrozen), 4) refrozen drained lake basin = Alas (frozen), 5) talik in thermokarst close to sea (unfrozen), 6) talik below seawater flooded thermokarst basins (= lagoons) (unfrozen). We show that the deep sediments (to 30 meter below surface) are characterized by an Hg concentration of 9.72 ± 9.28 μg kg-1 and an correlation of Hg to organic carbon, total nitrogen, grain-size distribution and mass specific magnetic susceptibility. Hg concentrations are higher in the generally sandier sediment of the Bykovsky Peninsula than in the siltier sediment of the Yukechi Alas. In conclusion, we found that the deep permafrost sediments, frozen since tens of millennia, contain sizeable amounts of Hg. Even though the average amount of Hg is with 9.72 μg/kg below levels immediately critical for life and our median is 85 % less (Schuster et al. 2018) than found in Arctic topsoil outside Siberia. Even if the Hg concentrations are not particularly high compared to other sites, the permafrost’s huge spatial coverage results in a significant amount of Hg that can be introduce into nearby aquatic environments and food webs. As the next step, the consequences of old Hg re-entering the active biogeochemical cycles and food webs with ongoing Arctic warming remain unclear and need to be studied in more detail. References 1.Schuster, P. et al. Geophysical Research Letters, 2018, 45, 1463– 1471, https://doi.org/10.1002/2017GL075571
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-11
    Description: Thermokarst lagoons, forming when thermokarst lakes are inundated by the sea, are an transition stage where terrestrial permafrost is introduced into the subsea realm. Here, permafrost and lacustrine carbon pools are transformed along Arctic coasts. During thaw previously frozen organic carbon can be converted into the greenhouse gases (GHG) carbon dioxide (CO2) and methane by microorganisms and leading to further climate warming. Especially for transition ecosystems like thermokarst lagoons it is largely unknown how GHG release is changing and whether thermokarst lagoons are a carbon source or sink. For getting a first glimpse of the consequences of saltwater inundation, we mimic the inundation of coastal permafrost in an experiment by incubating permafrost and thermokarst samples with artificial sea water under controlled conditions (4°C, dark, anaerobic) for 12 month. We used terrestrial samples from a 2.5 m high Yedoma outcrop, a thermokarst lake core, as well as samples from two neighboring thermokarst lagoons (a nearly-closed and a semi-closed) from the Bykovsky Peninsula, Northeast Siberia. By applying two different scenarios we aim to estimate (1) future GHG releases from newly formed Arctic lagoons by adding artificial seawater with a constant concentration and (2) the impact of increasing salinity on GHG production by incubating the samples under freshwater, brackish and marine conditions. Here we present (1) total organic carbon and dissolved organic carbon content for deep-drilled sediment cores (~ 30m) and (2) preliminary results on GHG production (methane and CO2) rates measured over 6 month. First results show that (1) GHG production is higher for inundated terrestrial sediments than for inundated lagoon sediments and (2) increasing salinity is favoring carbon dioxide production while methane production is low. In conclusion newly formed thermokarst lagoons, if upscaled to the thermokarst affected shorelines, are likely produce a significant amount of GHG under our experiment set-up.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...