ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (4)
Collection
Publisher
Language
Years
Year
  • 1
    Publication Date: 2022-10-04
    Description: The seasonal deposition and sublimation of CO2 represents a major element in the Martian volatile cycle. Here, co‐registration strategies are applied to Mars Orbiter Laser Altimeter profiles to obtain spatio‐temporal variations in snow/ice level of the Seasonal South Polar Cap (SSPC), in grid elements of 0.5° in latitude from 60° to 87°S and 10° in longitude. The maximum snow/ice level in the range of 2–2.5 m is observed over the Residual South Polar Cap. Peak level at the Residual South Polar Cap in Martian Year 25 (MY25) are found to be typically ∼0.5 m higher than those in MY24. The total volume is estimated to peak at approximately 9.4 × 1012 m3. In addition, a map of average bulk density of the SSPC during its recession is derived. It implies much more snowfall‐like precipitation at the Residual South Polar Cap and its surroundings than elsewhere on Mars.
    Description: Plain Language Summary: Each Martian year, up to one third of the atmosphere's CO2 is transported from pole to pole, being deposited and sublimated depending on the season. Accurate measurements of snow level and volume variations of the resulting seasonal polar caps can serve as crucial constraints on the Martian volatile cycles. In this study, we apply new approaches of analyzing the Mars Orbiter Laser Altimeter profiles, which lead to spatially and temporally resolved measurements of snow/ice level of the Seasonal South Polar Cap (SSPC). Based on that, the maximum snow level, interannual maximum level change from Martian Year 24 (MY24) to MY25, and how the volume of the SSPC changes with time are measured. We also estimate the bulk density of the snow/ice deposition during southern winter. It is inferred that there is much more snowfall at the Residual South Polar Cap and its surroundings than elsewhere on the planet.
    Description: Key Points: Using co‐registration of Mars Orbiter Laser Altimeter profiles, spatio‐temporal level variations of the seasonal snow/ice deposits at the Martian south pole are obtained. Maximum level can be up to 2.5 m; Peak level increased by ∼0.5 m at the Residual South Polar Cap from Martian Year 24 (MY24) to MY25. Obtained bulk density map of the seasonal deposits implies that snowfall concentrates at the Residual South Polar Cap and its surroundings.
    Description: China Scholarship Council
    Description: Deutsche Forschungsgemeinschaft
    Description: Institut National des Sciences de l’Univers
    Description: Centre National de la Recherche Scientifique
    Description: Centre National d’Etudes Spatiales
    Description: https://pds-geosciences.wustl.edu/missions/mgs/pedr.html
    Description: https://naif.jpl.nasa.gov/pub/naif/pds/data/mgs-m-spice-6-v1.0/mgsp_1000/data/
    Description: https://doi.org/10.17632/z59b9nd6s9.2
    Description: https://doi.org/10.14768/8cba4407-d6a0-4d16-aeaf-d0ebfd2b480a
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-04
    Description: Uncrewed aerial systems (UAS), combined with structure‐from‐motion photogrammetry, has already proven to be very powerful for a wide range of geoscience applications and different types of UAS are used for scientific and commercial purposes. However, the impact of the UAS used on the accuracy of the point clouds derived is not fully understood, especially for the quantitative analysis of geomorphic changes in complex terrain. Therefore, in this study, we aim to quantify the magnitude of systematic and random error in digital elevation models derived from four commonly used UAS (XR6/Sony α6000, Inspire 2/X4s, Phantom 4 Pro+, Mavic Pro) following different flight patterns. The vertical error of each elevation model is evaluated through comparison with 156 GNSS reference points and the normal distribution and spatial correlation of errors are analysed. Differences in mean errors (−0.4 to −1.8 cm) for the XR6, Inspire 2 and Phantom 4 Pro are significant but not relevant for most geomorphological applications. The Mavic Pro shows lower accuracies with mean errors up to 4.3 cm, thus showing a higher influence of random errors. QQ plots revealed a deviation of errors from a normal distribution in almost all data. All UAS data except Mavic Pro exhibit a pure nugget semivariogram, suggesting spatially uncorrelated errors. Compared to the other UAS, the Mavic Pro data show trends (i.e. differences increase with distance across the survey—doming) and the range of semivariances is 10 times greater. The lower accuracy of Mavic Pro can be attributed to the lower GSD at the same flight altitude and most likely, the rolling shutter sensor has an effect on the accuracy of the camera calibration. Overall, our study shows that accuracies depend highly on the chosen data sampling strategy and that the survey design used here is not suitable for calibrating all types of UAS camera equally.
    Description: In this study, we aim to quantify the magnitude of systematic and random error in digital elevation models derived from four commonly used UAS (XR6/Sony α6000, Inspire 2/X4s, Phantom 4 Pro+, Mavic Pro) following different flight patterns. Differences in mean errors (−0.4 to −1.8 cm) for the XR6, Inspire 2 and Phantom 4 Pro are significant but not relevant for most geomorphological applications. Compared to the other UAS, the Mavic Pro data show trends (i.e., differences increase with distance across the survey—doming), and the range of semivariances is 10 times greater. The lower accuracy of Mavic Pro can be attributed to the lower GSD at the same flight altitude, and most likely, the rolling shutter sensor has an effect on the accuracy of the camera calibration.
    Keywords: ddc:526.982
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-03
    Description: Diminishing prospects for environmental preservation under climate change are intensifying efforts to boost capture, storage and sequestration (long-term burial) of carbon. However, as Earth’s biological carbon sinks also shrink, remediation has become a key part of the narrative for terrestrial ecosystems. In contrast, blue carbon on polar continental shelves have stronger pathways to sequestration and have increased with climate-forced marine ice losses—becoming the largest known natural negative feedback on climate change. Here we explore the size and complex dynamics of blue carbon gains with spatiotemporal changes in sea ice (60–100 MtCyear−1), ice shelves (4–40 MtCyear−1 = giant iceberg generation) and glacier retreat (〈 1 MtCyear−1). Estimates suggest that, amongst these, reduced duration of seasonal sea ice is most important. Decreasing sea ice extent drives longer (not necessarily larger biomass) smaller cell-sized phytoplankton blooms, increasing growth of many primary consumers and benthic carbon storage—where sequestration chances are maximal. However, sea ice losses also create positive feedbacks in shallow waters through increased iceberg movement and scouring of benthos. Unlike loss of sea ice, which enhances existing sinks, ice shelf losses generate brand new carbon sinks both where giant icebergs were, and in their wake. These also generate small positive feedbacks from scouring, minimised by repeat scouring at biodiversity hotspots. Blue carbon change from glacier retreat has been least well quantified, and although emerging fjords are small areas, they have high storage-sequestration conversion efficiencies, whilst blue carbon in polar waters faces many diverse and complex stressors. The identity of these are known (e.g. fishing, warming, ocean acidification, non-indigenous species and plastic pollution) but not their magnitude of impact. In order to mediate multiple stressors, research should focus on wider verification of blue carbon gains, projecting future change, and the broader environmental and economic benefits to safeguard blue carbon ecosystems through law.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stark, J. R., Cardon, Z. G., & Peredo, E. L. Extraction of high-quality, high-molecular-weight DNA depends heavily on cell homogenization methods in green microalgae. Applications in Plant Sciences, 8(3), (2020): e11333, doi:10.1002/aps3.11333.
    Description: Premise New sequencing technologies have facilitated genomic studies in green microalgae; however, extracting high‐quality DNA is often a bottleneck for long‐read sequencing. Methods and Results Here, we present a low‐cost, highly transferrable method for the extraction of high‐molecular‐weight (HMW), high‐purity DNA from microalgae. We first determined the effect of sample preparation on DNA quality using three homogenization methods: manual grinding using a mini‐pestle, automatic grinding using a vortex adapter, and grinding in liquid nitrogen. We demonstrated the versatility of grinding in liquid nitrogen followed by a modified cetyltrimethylammonium bromide (CTAB) extraction across a suite of aquatic‐ and desert‐evolved algal taxa. Finally, we tested the protocol's robustness by doubling the input material to increase yield, producing per sample up to 20 μg of high‐purity DNA longer than 21.2 kbp. Conclusions All homogenization methods produced DNA within acceptable parameters for purity, but only liquid nitrogen grinding resulted in HMW DNA. The optimization of cell lysis while minimizing DNA shearing is therefore crucial for the isolation of DNA for long‐read genomic sequencing because template DNA length strongly affects read output and length.
    Description: The authors thank Dr. Louise Lewis (University of Connecticut) for providing Flechtneria rotunda and Acutodesmus deserticola, and Suzanne Thomas for expert technical assistance. This work was supported by the National Science Foundation, Division of Integrative Organismal Systems (1355085 to Z.G.C.) and an anonymous donor (to Z.G.C.).
    Keywords: DNA integrity ; long‐read sequencing ; modified CTAB extraction ; Scenedesmaceae
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...