ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-02-02
    Description: We developed a new retrieval algorithm based on the Infrared Atmospheric Sounding Interferometer (IASI) observations, called AEROIASI-H2SO4, to measure the extinction and mass concentration of sulphate aerosols (binary solution droplets of sulphuric acid and water), with moderate random uncertainties (typically 35% total uncertainty for column mass concentration estimations). The algorithm is based on a self-adapting Tikhonov–Phillips regularization method. It is here tested over a moderate-intensity eruption of Mount Etna volcano (18 March 2012), Italy, and is used to characterise this event in terms of the spatial distribution of the retrieved plume. Comparisons with simultaneous and independent aerosol optical depth observations from MODIS (Moderate Resolution Imaging Spectroradiometer), SO2 plume observations from IASI and simulations with the CHIMERE chemistry/transport model show that AEROIASI-H2SO4 correctly identifies the volcanic plume horizontal morphology, thus providing crucial new information towards the study of volcanic emissions, volcanic sulphur cycle in the atmosphere, plume evolution processes, and their impacts. Insights are given on the possible spectroscopic evidence of the presence in the plume of larger-sized particles than previously reported for secondary sulphate aerosols from volcanic eruptions.
    Description: Published
    Description: 1808
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: sulphate aerosols
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-02
    Description: The characterisation of aerosol emissions from volcanoes is a crucial step towards the assessment of their importance for regional air quality and regional-to-global climate. In this paper we present, for the first time, the characterisation of aerosol emissions of the Stromboli volcano, in terms of their optical properties and emission flux rates, carried out during the PEACETIME oceanographic campaign. Using sun-photometric observations realised during a near-ideal full plume crossing, a plume-isolated aerosol optical depth of 0.07–0.08 in the shorter-wavelength visible range, decreasing to about 0.02 in the near infrared range, was found. An Ångström exponent of 1.40 0.40 was also derived. This value may suggest the dominant presence of sulphate aerosols with a minor presence of ash. During the crossing, two separate plume sections were identified, one possibly slightly affected by ash coming from a mild explosion, and the other more likely composed of pure sulphate aerosols. Exploiting the full crossing scan of the plume, an aerosol emission flux rate of 9–13 kg/s was estimated. This value was 50% larger than for typical passively degassing volcanoes, thus pointing to the importance of mild explosions for aerosol emissions in the atmosphere.
    Description: Published
    Description: 4016
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: aerosol optical properties
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-22
    Description: The aerosol properties of Mount Etna's passive degassing plume and its short-term processes and radiative impact were studied in detail during the EPL-RADIO campaigns (summer 2016-2017), using a synergistic combination of observations and radiative transfer modelling. Summit observations show extremely high particulate matter concentrations. Using portable photometers, the first mapping of small-scale (within [Formula: see text] from the degassing craters) spatial variability of the average size and coarse-to-fine burden proportion of volcanic aerosols is obtained. A substantial variability of the plume properties is found at these spatial scales, revealing that processes (e.g. new particle formation and/or coarse aerosols sedimentation) are at play, which are not represented with current regional scale modelling and satellite observations. Statistically significant progressively smaller particles and decreasing coarse-to-fine particles burden proportion are found along plume dispersion. Vertical structures of typical passive degassing plumes are also obtained using observations from a fixed LiDAR station constrained with quasi-simultaneous photometric observations. These observations are used as input to radiative transfer calculations, to obtain the shortwave top of the atmosphere (TOA) and surface radiative effect of the plume. For a plume with an ultraviolet aerosol optical depth of 0.12-0.14, daily average radiative forcings of [Formula: see text] and [Formula: see text], at TOA and surface, are found at a fixed location [Formula: see text] downwind the degassing craters. This is the first available estimation in the literature of the local radiative impact of a passive degassing volcanic plume.
    Description: Published
    Description: 15224
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...