ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-04-22
    Description: Il progetto RETRACE-3D (centRal italy EarThquakes integRAted Crustal modEl) è volto alla caratterizzazione tridimensionale, geologica e sismotettonica, del volume di crosta terrestre che a partire dal 24 agosto 2016 è stato interessato dai terremoti di Amatrice, Visso e Norcia, e dalla relativa sequenza sismica. Il progetto è il risultato di una collaborazione tra il Dipartimento della Protezione Civile, l’Istituto Nazionale di Geofisica e Vulcanologia (INGV), il Consiglio Nazionale delle Ricerche che partecipa con l’Istituto di Geologia Ambientale e Geoingegneria (CNR-IGAG) e l’Istituto per il Rilevamento Elettromagnetico dell’Ambiente (CNR-IREA) e l’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), con la collaborazione di Eni e Total, realtà private ma anch’esse parte del Servizio nazionale della Protezione Civile, che hanno messo a disposizione i propri dati di sottosuolo.
    Description: INGV, ISPRA, CNR-IGAG, DPC
    Description: Published
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 4T. Sismicità dell'Italia
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: 3IT. Calcolo scientifico
    Description: 4IT. Banche dati
    Keywords: Central Appennines ; 2016 seismic sequence ; Seismotectonics ; 3D geological model
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-22
    Description: Three-dimensional geological model of the area of the central Apennines affected by the 2016-2018 seismic sequence. The model consists of stratigraphic surfaces (top or basal unconformity of units, or sequences of units, with homogeneous behavior) and main faults of the area. The stratigraphic surfaces are, from the oldest to the most recent: the top of pre-Upper Triassic units, the top of the intra-Triassic units, the top of Calcare Massiccio, the top of the Marne
    Description: INGV, ISPRA, CNR-IGAG, DPC.
    Description: Published
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 4T. Sismicità dell'Italia
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Keywords: Central Appennines ; 2016 seismic sequence ; Seismotectonics ; 3D geological model
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-28
    Description: Glacial-interglacial variations in ice volume and sea level are essential components of the Pleistocene global climate evolution. Deciphering the timing of change of these key climate parameters with respect to the insolation forcing is central to understanding the processes controlling glacial terminations. Here we exploit the sensitivity of the Paleo Tiber River (central Italy) to sea-level forced changes in the base level and the frequent occurrence of datable tephra layers in its sedimentary successions to reconstruct the timing of the relative sea-level (RSL) change between 450 and 403 ka, i.e., across the glacial termination (T-V) that marks the transition between Marine Isotope Stage (MIS) 12 and MIS 11. The analysis hinges on new stratigraphic data, tephra geochemical fingerprinting, and 40Ar/39Ar dating from a fluvial section that represents the inland counterpart of the near mouth, coastal aggradational succes- sions of the San Paolo Formation (SPF). Tephra correlation indicates that the morpho-stratigraphic record of the inland section is as sensitive to the sea-level change as its coastal counterparts, which makes it ideal to complement previous RSL reconstructions from the Tiber River catchment basin, thereby providing a more detailed picture of the sea-level history across T-V. Combined sedimentological and morphological proxies of the composed inland-coastal SPF record document the occurrence of two phases of relatively rapid sea-level rise, here interpreted as meltwater pulse (MWP) events. The earlier MWP occurred between ~450 and ~445 ka and matches a relatively minor episode of the sea-level rise documented in an existing RSL record, while the younger MWP at ~430 ka corresponds to the high amplitude sea-level rise that marks T-V. We find that both MWPs coincide with episodes of ice-rafted debris deposition in the North Atlantic (Heinrich-like events) and with attendant Southern Hemi- sphere warming, plausibly associated with the bipolar seesaw.
    Description: Published
    Description: 106976
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-14
    Description: Fluids play an important role in seismic faulting both at hypocentral depths during earthquake nucleation and at shallower crustal levels during rupture propagation. Pre- to co-seismic anomalies of crustal fluid circulation have been identified by hydrogeochemical and seismological monitoring and interpreted as potential precursors of strong earthquakes. To shed light on the role of fluids in seismic and precursory mechanisms, the active carbonate-hosted principal slip zone (7-8 cm thick) of the exhumed (exhumation 〈 3 km) normal Mt. Morrone Fault (central Apennines) has been investigated with a multi-disciplinary approach from the macro- to the nano-scale. The distal slip zone consists of white cementitious calcite-rich bands and red cataclastic bands composed of dolomite and calcite clasts embedded in a clay-rich matrix. The proximal slip zone consists of subparallel ultracataclastic layers separated by sharp slip surfaces. The ultracataclastic layers mutually inject/overprint, bearing evidence of granular fluidization, dolomite thermal decomposition, and clay amorphization. Fluid inclusions and the distribution of both trace and major elements reveal the inflow of both shallow and deep external fluids into the slip zone. Presumably, the deep fluids originated from a magmatic-like source and ascended along the fault during pre-seismic dilation and seismic ruptures, interacting with shallow phyllosilicate-rich flysch deposits and the fluids hosted within them. In this context, vanadium-rich fluidized microlayers along the exhumed Mt. Morrone Fault are reminiscent of vanadium-rich potential hydrogeochemical precursors arose in the shallow aquifers of the study area since a few months before the 2016 Mw 6.0 Amatrice earthquake.
    Description: Published
    Description: 117010
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-03
    Description: Expanding knowledge about the origin and mixing of deep fluids and the water–rock–gas interactions in aquifer systems can represent an improvement in the comprehension of crustal deformation processes. An analysis of the deep and meteoric fluid contributions to a regional groundwater circulation model in an active seismic area has been carried out. We performed two hydrogeochemical screenings of 15 springs in the San Vittorino Plain (central Italy). Furthermore, we updated the San Vittorino Plain structural setting with a new geological map and cross-sections, highlighting how and where the aquifers are intersected by faults. The application of Na-Li geothermometers, coupled with trace element and gas analyses, agrees in attributing the highest temperatures (〉150 C), the greatest enrichments in Li (124.3 ppb) and Cs (〉5 ppb), and traces of mantle-derived He (1–2%) to springs located in correspondence with high-angle faults (i.e., S5, S11, S13, and S15). This evidence points out the role of faults acting as vehicles for deep fluids into regional carbonate aquifers. These results highlight the criteria for identifying the most suitable sites for monitoring variations in groundwater geochemistry due to the uprising of deep fluids modulated by fault activity to be further correlated with crustal deformation and possibly with seismicity.
    Description: Published
    Description: 1353
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-02
    Description: The present research represents an approach toward the recycling of extractive waste inspired by circular economy and sustainability that is developed in accordance with Goal 12 of the United Nations 2030 Agenda for Sustainable Development Goals. A new procedure for the recovery of REEs from fluorite–barite–galena ores with calcite gangue from the Silius mine (Sardinia, Italy) is presented. The considered samples are waste materials of Silius mineralization, collected in the old processing plant of Assemini (near Cagliari). In this orebody, REE minerals consist of prevailing synchysite (a REE-bearing fluorocarbonate) and subordinate xenotime-Y (a Y-bearing phosphate). REE fluorocarbonates are extracted using 50% K2CO3 as the leaching solution, at 100 °C. Using a solution (mL)/sample (g) ratio of 25, about 10% of the total REE content of the considered sample is extracted within 1 h. At the laboratory scale, such alkaline leaching of REE from the waste materials allows the recovery of the CO2 produced as K2CO3 from concentrated KOH, in accordance with a circular flow. Further work is ongoing to scale up the process into a pilot plant, to prove that the method developed within this research can be economically feasible, socially suitable, and environmentally respectful.
    Description: Published
    Description: 14000
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: REE extraction; ; waste materials recycling ; alkaline leaching; ; Silius mine; ; Sardinia (Italy); ; circular economy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Haviland, K. A., Howarth, R. W., Marino, R., & Hayn, M. Variation in sediment and seagrass characteristics reflect multiple stressors along a nitrogen-enrichment gradient in a New England lagoon. Limnology and Oceanography, 67, (2022): 660-667, https://doi.org/10.1002/lno.12025.
    Description: We examined concentrations of organic carbon, dissolved sulfides, total sediment sulfur, and stable sulfur isotope ratios in seagrass leaf tissues across a nitrogen-enrichment gradient in a coastal marine ecosystem (Cape Cod, Massachusetts) in 2007–2010 and 2017–2019. We also measured seagrass aboveground and belowground biomass, epibiota biomass, and leaf chlorophyll content. Seagrasses were present at all sites in the former period but were lost at our most nitrogen-impacted site (Snug Harbor) by 2011. In 2007–2010, sediment organic carbon and dissolved sulfides were highest in Snug Harbor and decreased along the gradient; leaf tissues depleted in 34S also indicated higher sulfide intrusion into seagrass tissues in more eutrophic areas. By 2017–2019, sediment organic carbon and pore-water soluble sulfides had decreased in Snug Harbor, but had increased at the intermediate site, to levels found at the most impacted site prior to the seagrass die-off. Again, leaf tissue 34S depletion reflected this pattern, indicating seagrasses were exposed to the highest sulfides at the intermediate site. The decreases in sediment organic carbon and soluble sulfides in Snug Harbor years after the loss of the seagrasses illustrate a feedback between high organic matter in seagrass beds and increasing stressors like elevated soluble sulfides in nutrient-enriched systems. We found significant relationships between sediment conditions and seagrass responses, including greater aboveground to belowground biomass ratios, epibiota biomass, and 34S-depleted leaves at sites with high pore-water sulfide and highly organic sediments. Our research suggests that the reduction of anthropogenic nitrogen entering the harbor is necessary for improving sediment quality and preventing seagrass mortality.
    Description: The authors thankfully acknowledge as our funding sources: The National Science Foundation Biocomplexity, GRFP, and LTREB programs (grants 0420575, 1654845, and 2018241438), and the Woods Hole SeaGrant program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-14
    Description: The RETRACE-3D project (centRal italy EarThquakes integRAted Crustal model) focused on the revision of all the available geological and geophysical data in the area interested by the 2016-2018 seismic sequence of central Italy, with the final aim to reconstruct a reliable and consistent 3D geological model of that area. It is based on a collaboration, which was framed into a formal agreement, between Dipartimento della Protezione Civile (the Italian Civil Protection Department), Istituto di Geologia Ambientale e Geoingegneria, and Istituto per il Rilevamento Elettromagnetico of the Consiglio Nazionale delle Ricerche, Istituto Nazionale di Geofisica e Vulcanologia, and Istituto Superiore per la Protezione e la Ricerca Ambientale. The agreement purpose was to develop a project aimed at the geological and seismotectonic characterisation of the crustal volume hosting that seismic sequence. We present and discuss the approach, methodology and results of the project. The 3D geological model of the study area is developed in detail down to a depth of about 12 km, and extended to the Moho based on available regional-scale information. The model is available on the RETRACE-3D project website (www.retrace3d.it).
    Description: Consiglio dei Ministri
    Description: Published
    Description: 1-18
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 4T. Sismicità dell'Italia
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: earthquake ; seismogenic faults ; inherited faults ; 3D geological model ; central Apennines
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-09
    Description: Young and tectonically active chains like the Central Apennines (Italy) are featured by high structural complexity as a result of the overprint of subsequent deformational stages, making interpretation of seismotectonics challenging. The Central Apennines are characterized by the stacking of tectono-sedimentary units organized in thrust sheets. However, extensional tectonics is currently affecting the axial sector of the thrust belt, mostly expressing in extensional earthquakes. Using a large subsurface dataset acquired for hydrocarbon exploration in the region struck by the 2016–2017 Central Italy seismic sequence, we built a comprehensive 3D geological model and compared it with the seismicity. The model primarily shows a series of thrusts developed during the Miocene-Pliocene Apennines orogenesis and inherited normal faults developed during the Mesozoic extensional phase and the Miocene foreland flexural process. These normal faults were segmented and transported within the thrust sheets, and sometimes they still show a clear surface expression. The succession of tectonic stages resulted in a widespread reactivation of inherited structures, sometimes inverting their kinematics with different styles and rates, and disarticulating pre-existing configurations. Such evolution has a strong impact on the seismicity observed in the area, as demonstrated by some examples that show how the seismicity is aligned on segments of inherited faults, both compressional and extensional. Their reactivation can be explained by their favorable orientation within the current extensional stress field. Results feed the debate about the seismogenic potential of faults identified both at depth and surface, which can impact the seismic hazard of the Apennines.
    Description: Published
    Description: 228861
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Normal faults ; Thrust sheets ; Inherited faults ; Earthquakes ; Central Apennines ; 3D geological model ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...