ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-05-23
    Description: Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (∼ 54∘ N) and northern Norway (∼ 69∘ N). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower-thermosphere summer length (MLT-SL) using SMR and PRR winds and (2) the mesosphere summer length (M-SL) using the PRR and MLS. Under both definitions, the summer begins around April and ends around middle September. The largest year-to-year variability is found in the summer beginning in both definitions, particularly at high latitudes, possibly due to the influence of the polar vortex. At high latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity as well as large-scale atmospheric influences (e.g., quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at middle latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Journal of Rock Mechanics and Geotechnical Engineering
    Publication Date: 2022-05-20
    Description: Water reinjection into the formation is an indispensable operation in many energy engineering practices. This operation involves a complex hydromechanical (HM) coupling process and sometimes even causes unpredictable disasters, such as induced seismicity. It is acknowledged that the relative magnitude and direction of the principal stresses significantly influence the HM behaviors of rocks during injection. However, due to the limitations of current testing techniques, it is still difficult to comprehensively conduct laboratory injection tests under various stress conditions, such as in triaxial extension stress states. To this end, a numerical study of HM changes in rocks during injection under different stress states is conducted. In this model, the saturated rock is first loaded to the target stress state under drainage conditions, and then the stress state is maintained and water is injected from the top to simulate the formation injection operation. Particular attention is given to the difference in HM changes under triaxial compression and extension stresses. This includes the differences in the pore pressure propagation, mean effective stress, volumetric strain, and stress-induced permeability. The numerical results demonstrate that the differential stress will significantly affect the HM behaviors of rocks, but the degree of influence is different under the two triaxial stress states. The HM changes caused by the triaxial compression stress states are generally greater than those of extension, but the differences decrease with increasing differential stress, indicating that the increase in the differential stress will weaken the impact of the stress state on the HM response. In addition, the shear failure p otential of fracture planes with various inclination angles is analyzed and summarized under different stress states. It is recommended that engineers could design suitable injection schemes according to different tectonic stress fields versus fault occurrence to reduce the risk of injection-induced seismicity.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...