ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-22
    Description: The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986, last access: 5 November 2021). The alert products developed by the EUNADICS-AV EWS,i.e. near-real-time (NRT) observations, email notifications and netCDF (Network Common Data Form) alert data products (called NCAP files), have shown significant interest in using selective detection of natural airborne hazards from polar-orbiting satellites. The combination of several sensors inside a single global system demonstrates the advantage of using a triggered approach to obtain selective detection from observations, which cannot initially discriminate the different aerosol types. Satellite products from hyperspectral ultraviolet–visible (UV–vis) and infrared (IR) sensors (e.g. TROPOMI – TROPOspheric Monitoring Instrument – and IASI – Infrared Atmospheric Sounding Interferometer) and a broadband geostationary imager (Spinning Enhanced Visible and InfraRed Imager; SEVIRI) and retrievals from groundbased networks (e.g. EARLINET – European Aerosol Research Lidar Network, E-PROFILE and the regional network from volcano observatories) are combined by our system to create tailored alert products (e.g. selective ash detection, SO2 column and plume height, dust cloud, and smoke from wildfires). A total of 23 different alert products are implemented, using 1 geostationary and 13 polar-orbiting satellite platforms, 3 external existing service, and 2 EU and 2 regional ground-based networks. This allows for the identification and the tracking of extreme events. The EUNADICS-AV EWS has also shown the need to implement a future relay of radiological data (gamma dose rate and radionuclides concentrations in ground-level air) in the case of a nuclear accident. This highlights the interest of operating early warnings with the use of a homogenised dataset. For the four types of airborne hazard, the EUNADICS-AV EWS has demonstrated its capability to provide NRT alert data products to trigger data assimilation and dispersion modelling providing forecasts and inverse modelling for source term estimate. Not all of our alert data products (NCAP files) are publicly disseminated. Access to our alert products is currently restricted to key users (i.e. Volcanic Ash Advisory Centres, national meteorological services, the World Meteorological Organization, governments, volcano observatories and research collaborators), as these are considered pre-decisional products. On the other hand, thanks to the EUNADICS-AV–SACS (Support to Aviation Control Service) web interface (https: //sacs.aeronomie.be, last access: 5 November 2021), the main part of the satellite observations used by the EUNADICS-AV EWS is shown in NRT, with public email notification of volcanic emission and delivery of tailored images and NCAP files. All of the ATM stakeholders (e.g. pilots, airlines and passengers) can access these alert products through this free channel.
    Description: Published
    Description: 3367–3405
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(1), (2020): e2019GL085378, doi:10.1029/2019GL085378.
    Description: Retrospectively comparing future model projections to observations provides a robust and independent test of model skill. Here we analyze the performance of climate models published between 1970 and 2007 in projecting future global mean surface temperature (GMST) changes. Models are compared to observations based on both the change in GMST over time and the change in GMST over the change in external forcing. The latter approach accounts for mismatches in model forcings, a potential source of error in model projections independent of the accuracy of model physics. We find that climate models published over the past five decades were skillful in predicting subsequent GMST changes, with most models examined showing warming consistent with observations, particularly when mismatches between model‐projected and observationally estimated forcings were taken into account.
    Description: Z. H. conceived the project, Z. H. and H. F. D. created the figures, and Z. H., H. F. D., T. A., and G. S. helped gather data and wrote the article text. A public GitHub repository with code used to analyze the data and generate figures and csv files containing the data shown in the figures is available online (https://github.com/hausfath/OldModels). Additional information on the code and data used in the analysis can be found in the supporting information. We would like to thank Piers Forster for providing the ensemble of observationally‐informed radiative forcing estimates. No dedicated funding from any of the authors supported this project.
    Description: 2020-06-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: An emerging paradigm posits that the abyssal overturning circulation is driven by bottom-enhanced mixing, which results in vigorous upwelling in the bottom boundary layer (BBL) along the sloping seafloor and downwelling in the stratified mixing layer (SML) above; their residual is the overturning circulation. This boundary-controlled circulation fundamentally alters abyssal tracer distributions, with implications for global climate. Chapter 1 describes how a basin-scale overturning circulation arises from the coupling between the ocean interior and mixing-driven boundary layers over rough topography, such as the sloping flanks of mid-ocean ridges. BBL upwelling is well predicted by boundary layer theory, whereas the compensation by SML downwelling is weakened by the upward increase of the basin-wide stratification, which supports a finite net overturning. These simulated watermass transformations are comparable to best-estimate diagnostics but are sustained by a crude parameterization of boundary layer restratification processes. In Chapter 2, I run a realistic simulation of a fracture zone canyon in the Brazil Basin to decipher the non-linear dynamics of abyssal mixing layers and their interactions with rough topography. Using a hierarchy of progressively idealized simulations, I identify three physical processes that set the stratification of abyssal mixing layers (in addition to the weak buoyancy-driven cross-slope circulation): submesoscale baroclinic eddies on the ridge flanks, enhanced up-canyon flow due to inhibition of the cross-canyon thermal wind, and homogenization of canyon troughs below the level of blocking sills. Combined, these processes maintain a sufficiently large near-boundary stratification for mixing to drive globally significant BBL upwelling. In Chapter 3, simulated Tracer Release Experiments illustrate how passive tracers are mixed, stirred, and advected in abyssal mixing layers. Exact diagnostics reveal that while a tracer’s diapycnal motion is directly proportional to the mean divergence of mixing rates, its diapycnal spreading depends on both the mean mixing rate and an additional non-linear stretching term. These simulations suggest that the theorized boundary-layer control on the abyssal circulation is falsifiable: downwelling in the SML has already been confirmed by the Brazil Basin Tracer Release Experiment, while an upcoming experiment in the Rockall Trough will confirm or deny the existence of upwelling in the BBL.
    Description: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 174530. I also acknowledge funding support from National Science Foundation Awards OCE-1536515 and OCE-1736109. This work was partially supported by MIT’s Rosenblith Presidential Fellowship.
    Keywords: Abyss ; Circulation ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A., & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Global Change Biology, (2021), https://doi.org/10.1111/gcb.15735.
    Description: The ability of individuals and populations to adapt to a changing climate is a key determinant of population dynamics. While changes in mean behaviour are well studied, changes in trait variance have been largely ignored, despite being assumed to be crucial for adapting to a changing environment. As the ability to acquire resources is essential to both reproduction and survival, changes in behaviours that maximize resource acquisition should be under selection. Here, using foraging trip duration data collected over 7 years on black-browed albatrosses (Thalassarche melanophris) on the Kerguelen Islands in the southern Indian Ocean, we examined the importance of changes in the mean and variance in foraging behaviour, and the associated effects on fitness, in response to the El Niño Southern Oscillation (ENSO). Using double hierarchical models, we found no evidence that individuals change their mean foraging trip duration in response to a changing environment, but found strong evidence of changes in variance. Younger birds showed greater variability in foraging trip duration in poor conditions as did birds with higher fitness. However, during brooding, birds showed greater variability in foraging behaviour under good conditions, suggesting that optimal conditions allow the alteration between chick provisioning and self-maintenance trips. We found weak correlations between sea surface temperature and the ENSO, but stronger links with sea-level pressure. We suggest that variability in behavioural traits affecting resource acquisition is under selection and offers a mechanism by which individuals can adapt to a changing climate. Studies which look only at effects on mean behaviour may underestimate the effects of climate change and fail to consider variance in traits as a key evolutionary force.
    Description: The authors thank the Institut Polaire Français Paul Emile Victor (IPEV, programme 109 to HW) for providing financial and logistical support for the field work at Kerguelen, and to the Terres Australes et Antarctique Francaises (TAAF). The usage of the following data sets is gratefully acknowledged: SOI, NCEP/NCAR SLP and NOAA OISST v2, all provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, through https://www.esrl.noaa.gov/psd. CCU acknowledges support from the Joint Initiative Awards Fund from the Andrew W. Mellon Foundation and the James E. and Barbara V. Moltz Fellowship for Climate-Related Research.
    Keywords: Bet-hedging ; Intra-individual variability ; Resource acquisition ; Salt-water immersion logger ; Seabirds ; Southern Oscillation Index
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Drake, H. F., Rivest, R. L., Edelman, A., & Deutch, J. A simple model for assessing climate control trade-offs and responding to unanticipated climate outcomes. Environmental Research Letters, 16(10), (2021): 104012, https://doi.org/10.1088/1748-9326/ac243e.
    Description: Persistent greenhouse gas (GHG) emissions threaten global climate goals and have prompted consideration of climate controls supplementary to emissions mitigation. We present MARGO, an idealized model of optimally-controlled climate change, which is complementary to both simpler conceptual models and more complicated Integrated Assessment Models. The four methods of controlling climate damage—mitigation, carbon dioxide removal (CDR), adaptation, and solar radiation modification (SRM)—are not interchangeable, as they enter at different stages of the causal chain that connects GHG emissions to climate damages. Early and aggressive mitigation is necessary to stabilize GHG concentrations below a tolerable level. While the most cost-beneficial and cost-effective pathways to reducing climate suffering include deployments of all four controls, the quantitative trade-offs between the different controls are sensitive to value-driven parameters and poorly-known future costs and damages. Static policy optimization assumes perfect foresight and obscures the active role decision-makers have in shaping a climate trajectory. We propose an explicit policy response process wherein climate control policies are re-adjusted over time in response to unanticipated outcomes. We illustrate this process in two 'storyline' scenarios: (a) near-term increases in mitigation and CDR are deficient, such that climate goals are expected to slip out of reach; (b) SRM is abruptly terminated after 40 years of successful deployment, causing an extremely rapid warming which is amplified by an excess of GHGs due to deterred mitigation. In both cases, an optimized policy response yields substantial benefits relative to continuing the original policy. The MARGO model is intentionally designed to be as simple, transparent, customizable, and accessible as possible, addressing concerns about previous climate-economic modelling approaches and enabling a more diverse set of stakeholders to engage with these essential and timely topics.
    Description: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 174530.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sun, R., Barbraud, C., Weimerskirch, H., Delord, K., Patrick, S., Caswell, H., & Jenouvrier, S. Causes and consequences of pair‐bond disruption in a sex‐skewed population of a long‐lived monogamous seabird. Ecological Monographs, (2022): e1522, https://doi.org/10.1002/ecm.1522.
    Description: Many animals form long-term monogamous pair bonds, and the disruption of a pair bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success [LRS], life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, so the population is male-skewed. Therefore, we first posited that males would show higher widowhood rates negatively correlated with fishing effort and females would have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce could be an adaptive strategy, whereby individuals improved breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions could reduce survival and breeding probabilities owing to the cost of remating processes, with important consequences for life-history outcomes. As expected, we showed that males had higher widowhood rates than females and females had higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce was likely nonadaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the so-called forced divorce hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in LRS only for divorced and widowed males, respectively, owing to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals were more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation.
    Description: We acknowledge all the field workers involved in long-term demographic studies since 1960 on Possession Island for their invaluable help with data collection and Dominique Joubert for help with data management, as part of Program 109, “Seabirds and marine mammals as sentinels of global changes in the Southern Ocean,” funded by the French Polar Institute Paul-Émile Victor (IPEV; PIs H. Weimerskirch, C. Barbraud, P. Jouventin, J.L. Mougin). We acknowledge Institut Polaire Français, Paul-Emile Victor (IPEV), Terres Australes et Antarctiques Françaises, and Zone Atelier Antarctique et Terres Australes for logistical and financial support. SJ thanks Jimmy Garnier for earlier development of the two-sex model. We thank Rubao Ji, Michael G. Neubert, Serguei Savedra, and Joanie Van de Walle for thoughtful discussions and comments on an earlier version of the manuscript. SJ thanks Jimmy Garnier for constructive discussions on the conceptualization of the project. HC acknowledges support from the European Research Council, ERC Advanced Grant 788195. This work was supported by the National Science Foundation Office of Polar Programs Grant 1840058.
    Keywords: bycatch ; capture–mark–recapture ; divorce ; life-history outcomes ; Markov chain models ; sex-biased ; vital rates ; wandering albatross ; widowhood
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8),(2020): 2203-2226, doi:10.1175/JPO-D-19-0313.1.
    Description: The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories.
    Description: We acknowledge funding support from National Science Foundation Awards 6932401 and 6936732.
    Keywords: Abyssal circulation ; Bottom currents ; Boundary currents ; Mixing ; Bottom currents/bottom water ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...