ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-03
    Description: Benthic organisms of the Southern Ocean are particularly vulnerable to ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. OA most strongly affects animals with calcium carbonate skeletons or shells, such as corals and mollusks. We exposed the abundant cold-water coral Malacobelemnon daytoni from an Antarctic fjord to low pH seawater (LpH) (7.68 ± 0.17) to test its physiological responses to OA, at the level of gene expression (RT-PCR) and enzyme activity. Corals were exposed in short- (3 days) and long-term (54 days) experiments to two pCO2 conditions (ambient and elevated pCO2 equaling RCP 8.5, IPCC 2019, approximately 372.53 and 956.78 μatm, respectively). Of the eleven genes studied through RT-PCR, six were significantly upregulated compared with control in the short-term in the LpH condition, including the antioxidant enzyme superoxide dismutase (SOD), Heat Shock Protein 70 (HSP70), Toll-like receptor (TLR), galaxin and ferritin. After long-term exposure to low pH conditions, RT-PCR analysis showed seven genes were upregulated. These include the mannose-binding C-Lectin and HSP90. Also, the expression of TLR and galaxin, among others, continued to be upregulated after long-term exposure to LpH. Expression of carbonic anhydrase (CA), a key enzyme involved in calcification, was also significantly upregulated after long-term exposure. Our results indicated that, after two months, M. daytoni is not acclimatized to this experimental LpH condition. Gene expression profiles revealed molecular impacts that were not evident at the enzyme activity level. Consequently, understanding the molecular mechanisms behind the physiological processes in the response of a coral to LpH is critical to understanding the ability of polar species to cope with future environmental changes. Approaches integrating molecular tools into Antarctic ecological and/or conservation research make an essential contribution given the current ongoing OA processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-03
    Description: Metazoans normally possess a single lineage of mitochondria inherited from the mother (♀-type mitochondria) while paternal mitochondria are absent or eliminated in fertilized eggs. In doubly uniparental inheritance (DUI), which is specific to the bivalve clade including the ocean quahog, Arctica islandica, ♂-type mitochondria are retained in male gonads and, in a few species, small proportions of ♂-type mitochondria co-exist with ♀-type in somatic tissues. To the best of our knowledge, we report, for the first time in metazoan, the natural occurrence of male and female individuals with exclusively ♂-type mitochondria in somatic tissues of the bivalve A. islandica. Mitochondrial genomes differ by ~5.5% at DNA sequence level. Exclusive presence of ♂-type mitochondria affects mitochondrial complexes partially encoded by mitochondrial genes and leads to a sharp drop in respiratory capacity. Through a combination of whole mitochondrial genome sequencing and molecular assays (gene presence and expression), we demonstrate that 1) 11% of individuals of an Icelandic population appear homoplasmic for ♂-type mitochondria in somatic tissues, 2) ♂-type mitochondrial genes are transcribed and 3) individuals with ♂-type mitochondria in somatic cells lose 30% of their wild-type respiratory capacity. This mitochondrial pattern in A. islandica is a special case of DUI, highlighted in individuals from both sexes with functional consequences at cellular and conceivably whole animal level.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-03
    Description: Diminishing prospects for environmental preservation under climate change are intensifying efforts to boost capture, storage and sequestration (long-term burial) of carbon. However, as Earth’s biological carbon sinks also shrink, remediation has become a key part of the narrative for terrestrial ecosystems. In contrast, blue carbon on polar continental shelves have stronger pathways to sequestration and have increased with climate-forced marine ice losses—becoming the largest known natural negative feedback on climate change. Here we explore the size and complex dynamics of blue carbon gains with spatiotemporal changes in sea ice (60–100 MtCyear−1), ice shelves (4–40 MtCyear−1 = giant iceberg generation) and glacier retreat (〈 1 MtCyear−1). Estimates suggest that, amongst these, reduced duration of seasonal sea ice is most important. Decreasing sea ice extent drives longer (not necessarily larger biomass) smaller cell-sized phytoplankton blooms, increasing growth of many primary consumers and benthic carbon storage—where sequestration chances are maximal. However, sea ice losses also create positive feedbacks in shallow waters through increased iceberg movement and scouring of benthos. Unlike loss of sea ice, which enhances existing sinks, ice shelf losses generate brand new carbon sinks both where giant icebergs were, and in their wake. These also generate small positive feedbacks from scouring, minimised by repeat scouring at biodiversity hotspots. Blue carbon change from glacier retreat has been least well quantified, and although emerging fjords are small areas, they have high storage-sequestration conversion efficiencies, whilst blue carbon in polar waters faces many diverse and complex stressors. The identity of these are known (e.g. fishing, warming, ocean acidification, non-indigenous species and plastic pollution) but not their magnitude of impact. In order to mediate multiple stressors, research should focus on wider verification of blue carbon gains, projecting future change, and the broader environmental and economic benefits to safeguard blue carbon ecosystems through law.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-03
    Description: Precautionary conservation and cooperative global governance are needed to protect Antarctic blue carbon: the world's largest increasing natural form of carbon storage with high sequestration potential. As patterns of ice loss around Antarctica become more uniform, there is an underlying increase in carbon capture-to-storage-to-sequestration on the seafloor. The amount of carbon captured per unit area is increasing and the area available to blue carbon is also increasing. Carbon sequestration could further increase under moderate (+1°C) ocean warming, contrary to decreasing global blue carbon stocks elsewhere. For example, in warmer waters, mangroves and seagrasses are in decline and benthic organisms are close to their physiological limits, so a 1°C increase in water temperature could push them above their thermal tolerance (e.g. bleaching of coral reefs). In contrast, on the basis of past change and current research, we expect that Antarctic blue carbon could increase by orders of magnitude. The Antarctic seafloor is biophysically unique and the site of carbon sequestration, the benthos, faces less anthropogenic disturbance than any other ocean continental shelf environment. This isolation imparts both vulnerability to change, and an avenue to conserve one of the world's last biodiversity refuges. In economic terms, the value of Antarctic blue carbon is estimated at between £0.65 and £1.76 billion (~2.27 billion USD) for sequestered carbon in the benthos around the continental shelf. To balance biodiversity protection against society's economic objectives, this paper builds on a proposal incentivising protection by building a ‘non-market framework’ via the 2015 Paris Agreement to the United Nations Framework Convention on Climate Change. This could be connected and coordinated through the Antarctic Treaty System to promote and motivate member states to value Antarctic blue carbon and maintain scientific integrity and conservation for the positive societal values ingrained in the Antarctic Treaty System.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-03
    Description: Parallel phenotypic divergence is the independent differentiation between phenotypes of the same lineage or species occupying ecologically similar environments in different populations. We tested in the Antarctic limpet Nacella concinna the extent of parallel morphological divergence in littoral and sublittoral ecotypes throughout its distribution range. These ecotypes differ in morphological, behavioural and physiological characteristics. We studied the lateral and dorsal outlines of shells and the genetic variation of the mitochondrial gene Cytochrome Oxidase subunit I from both ecotypes in 17 sample sites along more than 2,000 km. The genetic data indicate that both ecotypes belong to a single evolutionary lineage. The magnitude and direction of phenotypic variation differ between ecotypes across sample sites; completely parallel ecotype-pairs (i.e., they diverge in the same magnitude and in the same direction) were detected in 84.85% of lateral and 65.15% in dorsal view comparisons. Besides, specific traits (relative shell height, position of shell apex, and elliptical/pear-shape outline variation) showed high parallelism. We observed weak morphological covariation between the two shape shell views, indicating that distinct evolutionary forces and environmental pressures could be acting on this limpet shell shape. Our results demonstrate there is a strong parallel morphological divergence pattern in N. concinna along its distribution, making this Antarctic species a suitable model for the study of different evolutionary forces shaping the shell evolution of this limpet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-03
    Description: In the deep sea, the phylogeny and biogeography of only a few taxa have been well studied. Although more than 200 species in 32 genera have been described for the asellote isopod families Desmosomatidae Sars, 1897 and Nannoniscidae Hansen, 1916 from all ocean basins, their phylogenetic relationships are not completely understood. There is little doubt about the close relationship of these families, but the taxonomic position of a number of genera is so far unknown. Based on a combined morphological phylogeny using the Hennigian method with a dataset of 107 described species and a molecular phylogeny based on three markers (COI, 16S, and 18S) with 75 species (most new to science), we could separate Desmosomatidae and Nannoniscidae as separate families. However, we could not support the concept of the subfamilies Eugerdellatinae Hessler, 1970 and Desmosomatinae Hessler, 1970. Most genera of both families were well supported, but several genera appear as para- or even polyphyletic. Within both families, convergent evolution and analogies caused difficulty in defining apomorphies for phylogenetic reconstructions and this is reflected in the results of the concatenated molecular tree. There is no biogeographic pattern in the distribution as the genera occur over the entire Atlantic and Pacific Ocean, showing no specific phylogeographical pattern. Poor resolution at deep desmosomatid nodes may reflect the long evolutionary history of the family and rapid evolutionary radiations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Trichodesmium field metaproteomes - protein spectral counts in alternative format
    Description: Metaproteomes of Trichodesmium from samples collected in North Atlantic surface waters, at station BATS (Bermuda Atlantic Time-series Study), and station ALOHA (A Long-Term Oligotrophic Habitat Assessment) between 2000 and 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/787078
    Description: Gordon and Betty Moore Foundation (GBMF) GBMF3934, Gordon and Betty Moore Foundation: Marine Microbiology Initiative (MMI) GBMF3782, NSF Division of Ocean Sciences (NSF OCE) OCE-1657766, NSF Division of Ocean Sciences (NSF OCE) OCE-1850719
    Keywords: Trichodesmium ; Metaproteomics
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Diel proteomes Trichodesmium IMS101
    Description: Diel proteomes of cultured Trichodesmium erythraeum sp. IMS101 from laboratory experiments conducted in November of 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/783873
    Description: Gordon and Betty Moore Foundation (GBMF) GBMF3934, Gordon and Betty Moore Foundation: Marine Microbiology Initiative (MMI) GBMF3782
    Keywords: Trichodesmium ; Diel proteins ; Proteome ; Proteomics
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography and Microbial Biogeochemistry at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: Marine microbes play key roles in global biogeochemistry by mediating chemical transformations and linking nutrient cycles to one another. A major goal in oceanography is to predict the activity of marine microbes across disparate ocean ecosystems. Towards this end, molecular biomarkers are important tools in chemical oceanography because they allow for both the observation and interpretation of microbial behavior. In this thesis, I use molecular biomarkers to develop a holistic, systems biology approach to the study of marine microbes. I begin by identifying unique patterns in the biochemical sensory systems of marine bacteria and suggest that these represent a specific adaptation to the marine environment. Building from this, I focus on the prevalent marine nitrogen fixer Trichodesmium, whose activity affects global nitrogen, carbon, phosphorus, and trace metal cycles. A metaproteomic survey of Trichodesmium populations identified simultaneous iron and phosphate co-stress throughout the tropical and subtropical oceans, demonstrating that this is caused by the biophysical limits of membrane space and nutrient diffusion. Tackling the problem at a smaller scale, I investigated the metaproteomes of individual Trichodesmium colonies captured from a single field site, and identified significant variability related to iron acquisition from mineral particles. Next, I investigated diel proteomes of cultured Trichodesmium erythraeum sp. IMS101 to highlight its physiological complexity and understand how and why nitrogen fixation occurs in the day, despite the incompatibly of the nitrogenase enzyme with oxygen produced in photosynthesis. This thesis develops a fundamental understanding of how Trichodesmium and other organisms affect, and are affected by, their surroundings. It indicates that a reductionist approach in which environmental drivers are considered independently may not capture the full complexity of microbechemistry interactions. Future work can focus on benchmarking and calibration of the protein biomarkers identified here, as well as continued connection of systems biology frameworks to the study of ocean chemistry.
    Description: This work was supported by an MIT Walter A. Rosenblith Presidential Fellowship and a National Science Foundation Graduate Research Program Fellowship under grant number 1122274 [N.Held]. This work was also supported by the WHOI Ocean Ventures fund [N.Held], Gordon and Betty Moore Foundation grant number 3782 [M.Saito], National Science Foundation grant numbers OCE-1657766 [M.Saito], EarthCube-1639714 [M.Saito], OCE-1658030 [M.Saito], and OCE-1260233 [M.Saito], and funding from the UK Natural Environment Research Council (NERC) under grants awarded to C.M. (NE/N001079/1) and M.L. (NE/N001125/1). This thesis was completed during a writing residency at the Turkeyland Cove Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...