ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (4)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-04-11
    Description: Earthquakes are generally known to alter the stress field near seismogenic faults. Observations using YRY-four-gauge borehole strainmeters within Yushu (YSH) borehole near the Ganzi-Yushu fault in eastern Tibetan Plateau shows that the azimuth variation of maximum horizontal stress (SH) first decreased and then increased substantially when the earthquakes occurred during the measurement period from January 1, 2009 to December 31, 2018. In this period, 38 earthquakes (M ≥ 3) were detected near the fault and the SH orientation showed a drastic change after the 2010 Ms 7.3 Yushu mainshock. We present a discrete element modelling using Particle Flow Code 2D (PFC2D) to simulate a dynamic fault rupturing process and to use the modelling results for interpretation of the stress reorientation. The modelling reveals that dilatation and compression quadrants are formed around a fault rupturing in strike-slip model, resulting in different spatiotemporal changes of the orientation of maximum horizontal stress (Δθ). The value of Δθ in the compression quadrants shows a sharp drop at the time of coseismic slip, then approaches slowly to an asymptotic value. In the dilatation quadrants, Δθ drops by coseismic slip, then increases sharply and finally reaches a stable value. The modelled Δθ by coseismic fault slip agrees with in-situ observations at YSH borehole during 2010 Ms 7.3 Yushu mainshock. It is also found that, the value of Δθ decreases with increasing distance from the rupturing source. We modelled the effect of fault geometry and host rock properties on the Δθ, and found that structural complexity and off-fault damage by coseismic fault slip have significant impact on the stress field alteration near the rupturing source.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-07
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-23
    Description: Earthquake site responses or site effects are the modifications of surface geology to seismic waves. How well can we predict the site effects (average over many earthquakes) at individual sites so far? To address this question, we tested and compared the effectiveness of different estimation techniques in predicting the outcrop Fourier site responses separated using the general inversion technique (GIT) from recordings. Techniques being evaluated are (a) the empirical correction to the horizontal-to-vertical spectral ratio of earthquakes (c-HVSR), (b) one-dimensional ground response analysis (GRA), and (c) the square-root-impedance (SRI) method (also called the quarter-wavelength approach). Our results show that c-HVSR can capture significantly more site-specific features in site responses than both GRA and SRI in the aggregate, especially at relatively high frequencies. c-HVSR achieves a “good match” in spectral shape at ∼80%–90% of 145 testing sites, whereas GRA and SRI fail at most sites. GRA and SRI results have a high level of parametric and/or modeling errors which can be constrained, to some extent, by collecting on-site recordings.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-15
    Description: The within-site variability in site response is the randomness in site response at a given site from different earthquakes and is treated as aleatory variability in current seismic hazard/risk analyses. In this study, we investigate the single-station variability in linear site response at K-NET and KiK-net stations in Japan using a large number of earthquake recordings. We found that the standard deviation of the horizontal-to-vertical Fourier spectral ratio at individual sites, i.e., single-station HVSR sigma σHV,s, approximates the within-site variability in site response quantified using surface-to-borehole spectral ratios (SBSR, for oscillator frequencies higher than the site fundamental frequency) or empirical groundmotion models (GMMs). Based on this finding, we then utilize the single-station HVSR sigma as a convenient tool to study the site-response variability at 697 KiK-net and 1169 K-NET sites. Our results show that at certain frequencies, stiff, rough and shallow sites, as well as small and local events tend to have a higher σHV,s. However, when being averaged over different sites, the single-station HVSR sigma, i.e., σHV, increases gradually with decreasing frequency. In the frequency range of 0.25-25 Hz, σHV is centred at 0.23-0.43 in ln scales (a linear scale factor of 1.26-1.54) with one standard deviation of less than 0.1. σHV is quite stable across different tectonic regions, and we present a constant, as well as earthquake magnitude- and distance-dependent σHV models.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...