ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-12-16
    Description: Abstract
    Description: This data publication provides a collection of ground-motion simulation output for potential future earthquakes in the Rhine Graben area, Germany. Such data can be used as input for other engineering calculations, such as dynamic response history analysis. The earthquake sources used for the simulation consist of a stochastic catalog. They were generated using the German national seismic hazard model, the event-set calculator in the OpenQuake engine (Pagani et al., 2014), and considering both areal seismic source and known tectonic faults in the area as seismic sources in the analyses (branch C in Grünthal et al.,2018). The generated events represent a possible realization of the seismicity in the area within 10,000 years with peak ground accelerations greater than 0.02g. To build the simulation database, ground-motion simulations are performed using these potential future earthquakes from stochastic catalog and adopting the simulation method of Graves and Pitarka (2010, 2015) implemented in the Southern California Earthquake Center (SCEC) broadband platform (BBP), which is tailored for use in the Rhine Graben, as discussed in Razafindrakoto et al. (2021). Here, the approach used to simulate the ground-motion is only briefly discussed; a more accurate description is given in Razafindrakoto et al. (2021), discussing the calibration and validation of ground-motion in the Rhine Graben area. Accordingly, the provided data consists of a simulation output of 284 scenario earthquakes at 76 virtual stations in the Rhine Graben area. The files provided here include the earthquake source, station information, and the simulation results in terms of time histories for individual simulation in one zip file, and a flatfile that combines various intensity measures for all sources and stations.
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-11
    Description: We present Rapid Assessment of MOmeNt and Energy Service (RAMONES), a service for disseminating through a web interface, the estimates of seismic moment (⁠M0⁠) and radiated energy (⁠ER⁠) for earthquakes occurring in central Italy with local magnitudes above 1.7. The service is based on a fully‐automatic procedure developed for downloading and processing open seismological data from the European Integrated Data Archive, Italian Civil Protection repository, and Incorporated Research Institutions for Seismology (IRIS). In its actual configuration, RAMONES uses the seismic catalog generated through the event webservice of the Italian Institute of Geophysics and Volcanology (compliant with International Federation of Digital Seismograph Networks standards) to guide the data download. The concept of RAMONES is to estimate M0 and ER from features extracted directly from recordings, namely the S‐wave peak displacement (⁠PDS⁠) and the integral of the squared velocity (⁠IV2S⁠) evaluated over the S‐wave window at local distances. A data set composed of 6515 earthquakes recorded in central Italy between 2008 and 2018 was used to calibrate the attenuation models relating M0 to PDS and ER to IV2S⁠, including station corrections. The calibration values for M0 and ER were extracted from the source spectra obtained by applying a decomposition approach to the Fourier amplitude spectra known as the generalized inversion technique. To test the capabilities of RAMONES, we validate the attenuation models by performing residual analysis over about 60 earthquakes occurring in 2019 that were used for the spectral decomposition analysis but not considered in the calibration phase. Since January 2020, a testing operational phase has been running, and RAMONES has analyzed about 800 earthquakes by September 2020. The distribution of the source parameters and their relevant scaling relationships are automatically computed and disseminated in the form of maps, parametric tables, figures, and reports available through the RAMONES web interface.
    Description: Published
    Description: 1759–1772
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: source parameters, coda waves, radiated energy, moment magnitude, corner frequency ; source parameters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-22
    Description: The earthquake that hit Colombia on July 12, 1785, is one of the seismic events with the highest number of macroseismic studies based on historical sources. Most of these studies have assigned a maximum intensity of VIII to the event. Following the study of Salcedo Hurtado and Castaño Castaño (2011), and applying the Bakun and Wentworth (1997) method and the macroseismic intensity attenuation proposed by Gómez Capera and Salcedo Hurtado (2002), we calculated the magnitude m b = 6.9±0.2 and the macroseismic epicentre at 28 km from Bogotá. The validation of the attenuation model was performed with the instrumental parameters of the earthquake occurred on May 24, 2008, in the same region of the historical earthquake studied in the present article.
    Description: Published
    Description: 206-217
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: N/A or not JCR
    Keywords: historical seismicity ; earthquakes ; earthquake parameters ; colombia ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-24
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy.
    Description: Robustness of source parameter estimates is a fundamental issue in understanding the relationships between small and large events; however, it is difficult to assess how much of the variability of the source parameters can be attributed to the physical source characteristics or to the uncertainties of the methods and data used to estimate the values. In this study, we apply the coda method by Mayeda et al. using the coda calibration tool (CCT), a freely available Java-based code (https://github.com/LLNL/coda-calibration-tool) to obtain a regional calibration for Central Italy for estimating stable source parameters. We demonstrate the power of the coda technique in this region and show that it provides the same robustness in source parameter estimation as a data-driven methodology [generalized inversion technique (GIT)], but with much fewer calibration events and stations. The Central Italy region is ideal for both GIT and coda approaches as it is characterized by high-quality data, including recent well-recorded seismic sequences such as L'Aquila (2009) and Amatrice–Norcia–Visso (2016–2017). This allows us to apply data-driven methods such as GIT and coda-based methods that require few, but high-quality data. The data set for GIT analysis includes ∼5000 earthquakes and more than 600 stations, while for coda analysis we used a small subset of 39 events spanning 3.5 〈 Mw 〈 6.33 and 14 well-distributed broad-band stations. For the common calibration events, as well as an additional 247 events (∼1.7 〈 Mw 〈 ∼5.0) not used in either calibration, we find excellent agreement between GIT-derived and CCT-derived source spectra. This confirms the ability of the coda approach to obtain stable source parameters even with few calibration events and stations. Even reducing the coda calibration data set by 75 per cent, we found no appreciable degradation in performance. This validation of the coda calibration approach over a broad range of event size demonstrates that this procedure, once extended to other regions, represents a powerful tool for future routine applications to homogeneously evaluate robust source parameters on a national scale. Furthermore, the coda calibration procedure can homogenize the Mw estimates for small and large events without the necessity of introducing any conversion scale between narrow-band measures such as local magnitude (ML) and Mw, which has been shown to introduce significant bias.〈/jats:p〉
    Description: Published
    Description: 1573–1590
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: source parameters, coda waves, radiated energy, moment magnitude, corner frequency ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...