ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-16
    Description: Spectroscopic measurements of soil samples are reliable because they are highly repeatable and reproducible. They characterise the samples' mineral–organic composition. Estimates of concentrations of soil constituents are inevitably less precise than estimates obtained conventionally by chemical analysis. But the cost of each spectroscopic estimate is at most one-tenth of the cost of a chemical determination. Spectroscopy is cost-effective when we need many data, despite the costs and errors of calibration. Soil spectroscopists understand the risks of over-fitting models to highly dimensional multivariate spectra and have command of the mathematical and statistical methods to avoid them. Machine learning has fast become an algorithmic alternative to statistical analysis for estimating concentrations of soil constituents from reflectance spectra. As with any modelling, we need judicious implementation of machine learning as it also carries the risk of over-fitting predictions to irrelevant elements of the spectra. To use the methods confidently, we need to validate the outcomes with appropriately sampled, independent data sets. Not all machine learning should be considered ‘black boxes’. Their interpretability depends on the algorithm, and some are highly interpretable and explainable. Some are difficult to interpret because of complex transformations or their huge and complicated network of parameters. But there is rapidly advancing research on explainable machine learning, and these methods are finding applications in soil science and spectroscopy. In many parts of the world, soil and environmental scientists recognise the merits of soil spectroscopy. They are building spectral libraries on which they can draw to localise the modelling and derive soil information for new projects within their domains. We hope our article gives readers a more balanced and optimistic perspective of soil spectroscopy and its future.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-24
    Description: Very large tsunamis are associated with low probabilities of occurrence. In many parts of the world, these events have usually occurred in a distant time in the past. As a result, there is low risk perception and a lack of collective memories, making tsunami risk communication both challenging and complex. Furthermore, immense challenges lie ahead as population and risk exposure continue to increase in coastal areas. Through the last decades, tsunamis have caught coastal populations off-guard, providing evidence of lack of preparedness. Recent tsunamis, such as the Indian Ocean Tsunami in 2004, 2011 Tohoku and 2018 Palu, have shaped the way tsunami risk is perceived and acted upon. Based on lessons learned from a selection of past tsunami events, this paper aims to review the existing body of knowledge and the current challenges in tsunami risk communication, and to identify the gaps in the tsunami risk management methodologies. The important lessons provided by the past events call for strengthening community resilience and improvement in risk-informed actions and policy measures. This paper shows that research efforts related to tsunami risk communication remain fragmented. The analysis of tsunami risk together with a thorough understanding of risk communication gaps and challenges is indispensable towards developing and deploying comprehensive disaster risk reduction measures. Moving from a broad and interdisciplinary perspective, the paper suggests that probabilistic hazard and risk assessments could potentially contribute towards better science communication and improved planning and implementation of risk mitigation measures.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-16
    Description: In this study we present the compositional changes of clinopyroxene (cpx), plagioclase (plg), spinel (sp), and glass experimentally solidified from an Icelandic MORB melt. The starting material was cooled at Patm and fO2 of air, in the thermal range of cooling (ΔTc) between 1300 °C (superliquidus) to 800 °C (solidus) with rates (ΔT/Δt) of 1, 7, 60, 180, 1800, and 9000 °C/h. The run products obtained at 1, 7 and 60 °C/h are holocrystalline, whilst between 60 and 180 °C/h plg disappears, and texture of cpx + sp. shifts from faceted to dendritic. As cooling rate increases, we observe that Fe2O3 decreases and Al2O3 increases in sp. and Al2O3 + Fe2O3 increase and CaO + MgO decrease in cpx. These measured variations mirror changes induced by cooling rate in cation (atoms per formula unit, a.p.f.u.) and molecular abundances of these two crystalline phases. Plg composition shows clear linear trends versus cooling rate. The chemistry of sp., cpx and, to a minor extent, plg solidified from this basaltic liquid is thus strictly related to the cooling rate condition and is similar to those observed in previous investigations on alkaline and evolved basaltic systems. In particular, cpx is the only mineral phase profusely present at all the cooling rates, showing the greatest chemical variations in terms of oxides, cations, and components. The intra-crystalline glass (≤ 50 μm from crystal rims) obtained at 180–1800 °C/h shows compositional variations related to the surrounding crystal growth, evidencing strong supersaturation phenomena (such as dendritic texture) due to the establishment of a diffusion-controlled growth regime. Chemical attributes of mineral phases are also quantitatively related with the maximum (Gmax) and average (GCSD) growth rates of sp., cpx, and plg. When compared with the starting melt composition, the chemistry of cpx suggests the attainment of near-equilibrium crystallization conditions at cooling rate ≤ 60 °C/h, whereas disequilibrium effects are found at cooling rate 〉 60 °C/h. In contrast, plg is in disequilibrium with the initial melt chemistry in all experiments. By using thermometric models, the calculated crystallization of plg takes place at temperatures much lower than those of cpx, when the crystal content is high and the diffusion of cations in the melt is slow due to the higher (residual) melt viscosity. Under such conditions and due to the effect of cooling, the system cannot return to homogeneous concentrations and, consequently, plg more effectively records the disequilibrium partitioning of cations between the growing crystal surface. The data-set reported here captures the entire (superliquidus to solidus) and intrinsic (heterogeneous site-free silicate liquid) solidification behavior from an actual MORB melt from very rapid to extremely sluggish cooling rate. Finally, all analytical relationships found in this work enable careful reconstruction of the solidification conditions of MORB melts, providing novel geo-speedometers for them at high fO2.
    Description: Published
    Description: 120765
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-14
    Description: Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach.
    Description: Published
    Description: 628772
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-23
    Description: In this Research Topic, we aimed to contribute to the ongoing scientific progress and the process of assessing and providing community-based standards, good practices, benchmarking tools and guidelines, based on the most recent observations and scientific findings. This purpose is in line with several community-based efforts like those of the “GTM—Global Tsunami Model” and “AGITHAR—Accelerating Global science In Tsunami Hazard and Risk analysis” scientific networks. We aimed to help better address the link between tsunami science and the Probabilistic Tsunami Hazard and Risk Analysis. This Topic includes numerous Original Research papers, one Brief Research Report and one Review. Overall, we gathered 20 articles contributed by more than 200 authors. We consider this a strong indication from the research community.
    Description: Published
    Description: 764922
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-06
    Description: Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.
    Description: Plain Language Summary: Deep neural nets are hard to interpret due to their hundred thousand or million trainable parameters without further postprocessing. We demonstrate in this paper the usefulness of a network type that is designed to drastically reduce this high dimensional information in a lower‐dimensional space to enhance the interpretability of predictions compared to regular deep neural nets. Our approach is, on the one hand, able to reproduce small‐scale cloud related processes in the atmosphere learned from a physical model that simulates these processes skillfully. On the other hand, our network allows us to identify key features of different cloud types in the lower‐dimensional space. Additionally, the lower‐order manifold separates tropical samples from polar ones with a remarkable skill. Overall, our approach has the potential to boost our understanding of various complex processes in Earth System science.
    Description: Key Points: A Variational Encoder Decoder (VED) can predict sub‐grid‐scale thermodynamics from the coarse‐scale climate state. The VED's latent space can distinguish convective regimes, including shallow/deep/no convection. The VED's latent space reveals the main sources of convective predictability at different latitudes.
    Description: EC ERC HORIZON EUROPE European Research Council http://dx.doi.org/10.13039/100019180
    Description: Columbia sub‐award 1
    Description: Advanced Research Projects Agency - Energy http://dx.doi.org/10.13039/100006133
    Description: Deutsches Klimarechenzentrum http://dx.doi.org/10.13039/100018730
    Description: National Science Foundation Science and Technology Center Learning the Earth with Artificial intelligence and Physics
    Keywords: ddc:551.5 ; machine learning ; generative deep learning ; convection ; parameterization ; explainable artificial intelligence ; dimensionality reduction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-11-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...