ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jacox, M. G., Alexander, M. A., Siedlecki, S., Chen, K., Kwon, Y., Brodie, S., Ortiz, I., Tommasi, D., Widlansky, M. J., Barrie, D., Capotondi, A., Cheng, W., Di Lorenzo, E., Edwards, C., Fiechter, J., Fratantoni, P., Hazen, E. L., Hermann, A. J., Kumar, A., Miller, A. J., Pirhalla, D., Buil, M. P., Ray, S., Sheridan, S. C., Subramanian, A., Thompson, P., Thorne, L., Annamalai, H., Aydin, K., Bograd, S. J., Griffis, R. B., Kearney, K., Kim, H., Mariotti, A., Merrifield, M., & Rykaczewski, R. Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Progress in Oceanography, 183, (2020): 102307, doi:10.1016/j.pocean.2020.102307.
    Description: Marine ecosystem forecasting is an area of active research and rapid development. Promise has been shown for skillful prediction of physical, biogeochemical, and ecological variables on a range of timescales, suggesting potential for forecasts to aid in the management of living marine resources and coastal communities. However, the mechanisms underlying forecast skill in marine ecosystems are often poorly understood, and many forecasts, especially for biological variables, rely on empirical statistical relationships developed from historical observations. Here, we review statistical and dynamical marine ecosystem forecasting methods and highlight examples of their application along U.S. coastlines for seasonal-to-interannual (1–24 month) prediction of properties ranging from coastal sea level to marine top predator distributions. We then describe known mechanisms governing marine ecosystem predictability and how they have been used in forecasts to date. These mechanisms include physical atmospheric and oceanic processes, biogeochemical and ecological responses to physical forcing, and intrinsic characteristics of species themselves. In reviewing the state of the knowledge on forecasting techniques and mechanisms underlying marine ecosystem predictability, we aim to facilitate forecast development and uptake by (i) identifying methods and processes that can be exploited for development of skillful regional forecasts, (ii) informing priorities for forecast development and verification, and (iii) improving understanding of conditional forecast skill (i.e., a priori knowledge of whether a forecast is likely to be skillful). While we focus primarily on coastal marine ecosystems surrounding North America (and the U.S. in particular), we detail forecast methods, physical and biological mechanisms, and priority developments that are globally relevant.
    Description: This study was supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) program through grants NA17OAR4310108, NA17OAR4310112, NA17OAR4310111, NA17OAR4310110, NA17OAR4310109, NA17OAR4310104, NA17OAR4310106, and NA17OAR4310113. This paper is a product of the NOAA/MAPP Marine Prediction Task Force.
    Keywords: Prediction ; Predictability ; Forecast ; Ecological forecast ; Mechanism ; Seasonal ; Interannual ; Large marine ecosystem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Prouty, N. G., Brothers, D. S., Kluesner, J. W., Barrie, J. V., Andrews, B. D., Lauer, R. M., Greene, H. G., Conrad, J. E., Lorenson, T. D., Law, M. D., Sahy, D., Conway, K., McGann, M. L., & Dartnell, P. Focused fluid flow and methane venting along the Queen Charlotte fault, offshore Alaska (USA) and British Columbia (Canada). Geosphere, 16(6), (2020): 1336-1357, doi:10.1130/GES02269.1.
    Description: Fluid seepage along obliquely deforming plate boundaries can be an important indicator of crustal permeability and influence on fault-zone mechanics and hydrocarbon migration. The ∼850-km-long Queen Charlotte fault (QCF) is the dominant structure along the right-lateral transform boundary that separates the Pacific and North American tectonic plates offshore southeastern Alaska (USA) and western British Columbia (Canada). Indications for fluid seepage along the QCF margin include gas bubbles originating from the seafloor and imaged in the water column, chemosynthetic communities, precipitates of authigenic carbonates, mud volcanoes, and changes in the acoustic character of seismic reflection data. Cold seeps sampled in this study preferentially occur along the crests of ridgelines associated with uplift and folding and between submarine canyons that incise the continental slope strata. With carbonate stable carbon isotope (δ13C) values ranging from −46‰ to −3‰, there is evidence of both microbial and thermal degradation of organic matter of continental-margin sediments along the QCF. Both active and dormant venting on ridge crests indicate that the development of anticlines is a key feature along the QCF that facilitates both trapping and focused fluid flow. Geochemical analyses of methane-derived authigenic carbonates are evidence of fluid seepage along the QCF since the Last Glacial Maximum. These cold seeps sustain vibrant chemosynthetic communities such as clams and bacterial mats, providing further evidence of venting of reduced chemical fluids such as methane and sulfide along the QCF.
    Description: The authors thank officers and crew of the CCGS Vector and CCGS John P. Tully; M. Baker (USGS), R. Garrison (UCSC), J. Fitzpatrick, (USGS), N. Vokhshoori (UCSC), and C. Maupin (Texas A&M University, College Station, Texas, USA) for laboratory and sample assistance; and J. Pohlman (USGS) for helpful comments. Input from two anonymous reviewers substantially improved the manuscript. The USGS Coastal and Marine Hazards and Resource Program funded this study. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Additional geochemical and geophysical data to support this project can be found in Prouty et al. (2019) and Balster-Gee et al. (2017a, 2017b), respectively.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...