ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(2), (2020): e2019JC015400, doi:10.1029/2019JC015400.
    Description: One of the foci of the Forum for Artic Modeling and Observational Synthesis (FAMOS) project is improving Arctic regional ice‐ocean models and understanding of physical processes regulating variability of Arctic environmental conditions based on synthesis of observations and model results. The Beaufort Gyre, centered in the Canada Basin of the Arctic Ocean, is an ideal phenomenon and natural laboratory for application of FAMOS modeling capabilities to resolve numerous scientific questions related to the origin and variability of this climatologic freshwater reservoir and flywheel of the Arctic Ocean. The unprecedented volume of data collected in this region is nearly optimal to describe the state and changes in the Beaufort Gyre environmental system at synoptic, seasonal, and interannual time scales. The in situ and remote sensing data characterizing ocean hydrography, sea surface heights, ice drift, concentration and thickness, ocean circulation, and biogeochemistry have been used for model calibration and validation or assimilated for historic reconstructions and establishing initial conditions for numerical predictions. This special collection of studies contributes time series of the Beaufort Gyre data; new methodologies in observing, modeling, and analysis; interpretation of measurements and model output; and discussions and findings that shed light on the mechanisms regulating Beaufort Gyre dynamics as it transitions to a new state under different climate forcing.
    Description: We would like to thank all FAMOS participants (https://web.whoi.edu/famos/ and https://famosarctic.com/) and collaborators of the Beaufort Gyre Exploration project (https://www.whoi.edu/beaufortgyre) for their continued enthusiasm, creativity, and support during all stages of both projects. This research is supported by the National Science Foundation Office of Polar Programs (projects 1845877, 1719280, and 1604085). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Arctic dynamic topography/geostrophic currents data were provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography; Armitage et al. (2016, 2017). The other data used in this paper are available at the NCAR/NCEP (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html), NSIDC (https://nsidc.org/), NSF's Arctic data center (https://arcticdata.io/; Keywords for data search are “Beaufort Gyre”, “Krishfield” or “Proshutinsky”), and WHOI Beaufort Gyre exploration website (www.whoi.edu/beaufortgyre).
    Keywords: Beaufort Gyre ; Circulation ; Freshwater content ; Sea ice ; Ecosystems ; Hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M-L., Williams, W. J., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S-H., Cho, K-H., Tateyama, K., & Zhao, J. Analysis of the Beaufort Gyre freshwater content in 2003-2018. Journal of Geophysical Research-Oceans, 124(12), (2019): 9658-9689, doi:10.1029/2019JC015281.
    Description: Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle interannual variations.
    Description: National Science Foundation. Grant Numbers: PLR‐1302884,OPP‐1719280, and OPP‐1845877, PLR‐1303644 and OPP‐1756100, OPP‐1756100, PLR‐1303644, OPP‐1845877, OPP‐1719280, PLR‐1302884 Key Program of National Natural Science Foundation of China. Grant Number: 41330960 Global Change Research Program of China. Grant Number: 2015CB953900 Ministry of Education, Korea Japan Aerospace Exploration Agency (JAXA) /Earth Observation Research Center (EORC) Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Stanback Postdoctoral Fellowship Russian Foundation for Basic Research. Grant Number: 17‐05‐00382 Presidium of Russian Academy of Sciences HYCOM NOPP. Grant Number: N00014‐15‐1‐2594 DOE. Grant Number: DE‐SC0014378 National Aeronautics and Space Administration Tokyo University of Marine Science and Technology Department of Fisheries and Oceans Canada Woods Hole Oceanographic Institution
    Keywords: Beaufort Gyre ; Arctic Ocean ; Freshwater balance ; Circulation ; Modeling ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...