ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Babbin, A. R., Tamasi, T., Dumit, D., Weber, L., Rodríguez, M. V. I., Schwartz, S. L., Armenteros, M., Wankel, S. D., & Apprill, A. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME Journal, (2020), doi:10.1038/s41396-020-00845-2.
    Description: Coral reef health depends on an intricate relationship among the coral animal, photosynthetic algae, and a complex microbial community. The holobiont can impact the nutrient balance of their hosts amid an otherwise oligotrophic environment, including by cycling physiologically important nitrogen compounds. Here we use 15N-tracer experiments to produce the first simultaneous measurements of ammonium oxidation, nitrate reduction, and nitrous oxide (N2O) production among five iconic species of reef-building corals (Acropora palmata, Diploria labyrinthiformis, Orbicella faveolata, Porites astreoides, and Porites porites) in the highly protected Jardines de la Reina reefs of Cuba. Nitrate reduction is present in most species, but ammonium oxidation is low potentially due to photoinhibition and assimilatory competition. Coral-associated rates of N2O production indicate a widespread potential for denitrification, especially among D. labyrinthiformis, at rates of ~1 nmol cm−2 d−1. In contrast, A. palmata displays minimal active nitrogen metabolism. Enhanced rates of nitrate reduction and N2O production are observed coincident with dark net respiration periods. Genomes of bacterial cultures isolated from multiple coral species confirm that microorganisms with the ability to respire nitrate anaerobically to either dinitrogen gas or ammonium exist within the holobiont. This confirmation of anaerobic nitrogen metabolisms by coral-associated microorganisms sheds new light on coral and reef productivity.
    Description: Research was conducted in the Gardens of the Queen, Cuba in accordance with the requirements of the Republic of Cuba, conducted under permit NV2370 and NV2568 issued by the Ministerio de Relaciones Exteriores. We gratefully acknowledge funding for this research by MIT Sea Grant award #2018-DOH-49-LEV, Simons Foundation award #622065, and MIT ESI seed funding to ARB, the MIT Montrym, Ferry, and mTerra Seed Grant Funds, and the generous contributions by Dr Bruce L. Heflinger.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...